An application of integral equation method to fractional Stefan problem(in Ukrainian)

M. V. Krasnoschok
Division of Applied Problems of Modern Analysis, Institute of Mathematics of NASU
Fractional Stefan problem is reduced to a nonlinear integral equation of the Volterra type. Solvability of this equation is established by the contraction mapping principle.
Stefan problem; free boundary; fractional integral; fractional derivative; Volterra integral equation
1. Friedman A. Partial differential equations of parabolic type. – R.E. Krieger Publishing Company, Malabar, Florida, 1983.

2. Meirmanov A.M. The Stefan Problem. – De Gruyter, Berlin, 1992. Russian edition: Nauka, Novosibirsk, 1986.

3. Bazaliy B.V., Degtyarev S.P. On the classical solvability of the multidimensional Stefan problem for convective motion of a viscous incompressible fluid// Math. USSR Sb. – 1988. – V.60, Ή1. – P. 11–17.

4. Bizhanova G.I., Solonnikov V.A. On free boundary problems for the second order parabolic equations// Algebra Anal. – 2000. – V.12, Ή6. – P. 98–139.

5. Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations. North Holland, Mathematical studies, 204, Elsevier Science B.V., Amsterdam, 2006.

6. Podlubny I. Fractional differential equations. – Academic Press, San-Diego, 1999.

7. Fromberg D. Reaction kinetics under anomalous diffusion. – Ph. D. Thesis, Humboldt-Universitat zu Berlin, 2011.

8. Kochubei A.N. Fractional-order diffusion// Differential Equations. – 1990. – V.26. – P. 485–492.

9. Kochubei A.N. Fractional parabolic systems// Potential analysis. – 2012. – V.37. – P. 1–30.

10. Pskhu A.V. A fundamental solution for a fractional diffusion wave equation// Izvestia RAN. – 2009. – V.73. – P. 141–181. (in Russian)

11. Pskhu A.V. Partial differential equation equations of the fractional order. – Nauka, Moscow, 2005. (in Russian)

12. Cle’ment Ph., Londen S.-O., Simonett G. Quasilinear evolutionary equations and continuous interpolation spaces// J. Diff. Eqs. – 2004. – V.196, Ή2. – P. 418–447.

13. Lopushans’ka H.P., Lopushans’kyi A. O. Space-time fractional Cauchy problem in spaces of generalized functions// Ukrainian Math. J. – 2013. – V.64, Ή8. – P. 1215–1230.

14. Kemppainen J. Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition// Abstract and Applied Analysis. – 2011. – Article ID 321903, 11 p.

15. Kemppainen J., Ruotsalainen K. Boundary integral solution of the time-fractional diffusion equation// Integr. equ. oper. theory. – 2009. – V.64. – P. 239–249.

16. Liu J., Xu M. An exact solution to the moving boundary problem with fractional anomalous diffusion in drug release devices// Z. Angew. Math. Mech. – 2004. – V.84, Ή1. – P. 22–28.

17. Voller V.R., Falcini F., Garra R. Fractional Stefan problems exhibiting lumped and distributed latent-heat memory effects// Physical Review E. – 2013. – V.87. – P. 5622–5625.

18. Li X.C. Fractional moving boundary problems and some of its applications to controlled release system of Drug// Ph. D. Thesis, Shandong University, Jinan, 2009.

19. Voller V.R. An exact solution of a limit case Stefan problem governed by a fractional diffusion equation// Internat. J. Heat and Mass Transf. – 2010. – Ή53. – P. 5622–5625.

20. Liu J., Xu M. Some exact solutions to Stefan problems with fractional differential equations// J. Math. Anal. Appl. – 2009. – V.351. – P. 536–542.

21. Atkinson C. Moving boundary problems for time fractional and composition dependent diffusion// Frac. Calcul. and Appl. Analysis. – 2012. – V.15, Ή2. – P. 207–221.

22. Roscani R., Marcus E.S. Two equivalent Stefan’s problems for the time fractional diffusion equation// Fractional Calculus and Applied Analysis. – 2013. – V.16. – P. 802–815.

23. Roscani S., Marcus E.A.S. A new equivalence of Stefan’s problems for the time-fractional-diffusion equation,

Matematychni Studii
Full text of paper
Table of content of issue