On a new condition of finite Lipschitz of Orlicz-Sobolev class(in Russian)

R. R. Salimov
Institute of Mathematics Ukrainian National Academy of Sciences, Kyiv
It is found a new sufficient condition of finite Lipschitz in terms of inner dilation for homeomorphisms of the Orlicz-Sobolev class $W_{{\rm loc}}^{1,\varphi}$ under a condition of the Calderon type on $\varphi$.
$p$-moduli of the families of curves, $p$-moduli of the families of surfaces, mappings of finite distortion, Sobolev classes, Orlicz–Sobolev classes, local Lipschitz, finite Lipschitz
1. Gehring F.W. Lipschitz mappings and the p-capacity of ring in n-space// Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Studies. – 1971. – V.66. – P. 175–193.

2. Iwaniec T., Sverak V. On mappings with integrable dilatation// Proc. Amer. Math. Soc. – 1993. – V.118. – P. 181–188.

3. Iwaniec T., Martin G. Geometrical function theory and non-linear analysis. – Clarendon Press, Oxford, 2001.

4. Salimov R.R. On finite Lipschitz Orlicz–Sobolev classes// Vladikavkaz. Mat. Zh. – 2015. – V.17, ¹1. – P. 64–77. (in Russian)

5. Reshetnyak, Yu.G. Spatial mappings with bounded distortion. – Nauka, Novosibirsk, 1982. (in Russian)

6. Krasnosel’skii M.A., Rutickii Ja.B. Convex functions and Orlicz spaces. – Problems of Contemporary Mathematics Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958. (in Russian)

7. Mazia V.H. Sobolev spaces. – Leningrad Univ., Leningrad. – 1985. (in Russian)

8. Iwaniec T., Koskela P., Onninen J. Mappings of finite distortion: Compactness// Ann. Acad. Sci. Fenn. Ser. A1. Math. – 2002. – V.27, ¹2. – P. 391–417.

9. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. To the theory of the mappings of Sobolev and Orlicz–Sobolev classes. – Naukova Dumka, Kyiv, 2013. (in Russian)

10. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevost’yanov E.A. Toward the theory of the Orlicz- Sobolev classes// Algebra i Analiz. – 2013. - V.25, ¹6. - P. 50–102. (in Russian)

11. Vaisala J. Two new characterizations for quasiconformality// Ann. Acad. Sci. Fenn. Ser. A1 Math. – 1965. – V.362. – P. 1–12.

12. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory// Springer Monographs in Mathematics. – Springer, New York etc, 2009.

13. Menchoff D. Sur les differencelles totales des fonctions univalentes// Math. Ann. – 1931. – V.105. – P. 75–85.

14. Gehring F.W., Lehto O. On the total differentiability of functions of a complex variable// Ann. Acad. Sci. Fenn. Ser. A1. Math. – 1959. – V.272. – P. 3–8.

15. Lehto O., Virtanen K. Quasiconformal mappings in the plane. – Springer–Verlag, New York, 1973.

16. Golberg A., Salimov R. Topological mappings of integrally bounded p–moduli// Ann. Univ. Bucharest, Ser. Math. - 2012. - V.3(LXI), ¹1. - P. 49–66.

17. Salimov R. One property of ring Q-homeomorphisms with respect to a p-module// Ukr. Math. Journal - 2013. - V.65, ¹5.- P. 728–733. (in Russian)

18. Saks S. Theory of the integral. – IL, M., 1949. (in Russian)

19. Federer G. Geometric measure theory. – Nauka, Moscow, 1987. (in Russian)

20. Sevost’yanov E.A. Investigation of space mappings by geometric method. – Naukova Dumka, Kyiv, 2014. (in Russian)

Matematychni Studii
Full text of paper
Table of content of issue