A note-question on partitions of semigroups |
|
Author |
I.V.Protasov@gmail.com
Department of Cybernetics, Kyiv University
|
Abstract |
Given a semigroup $S$ and an $n$-partition $\mathcal{P}$ of $S$, $n\in \mathbb{N}$, do there exist $A\in \mathcal{P}$ and a subset~$F$ of $S$ such that $S=F ^{-1} \{x \in S\colon x A \cap A\neq\emptyset\}$ and $|F |\leq n$?
We give an affirmative answer provided that either $S$ is finite or $n=2$.
|
Keywords |
partitions of semigroups; covering number
|
DOI |
doi:10.15330/ms.44.1.104-106
|
Reference |
1. Banakh T., Protasov I., Slobodianiuk S. Densities, submeasures and partitions of G-spaces and groups,
Algebra and Discrete Mathematics, 17 (2014), ¹2, 193–221; available at http://arxiv.org./abs/1303.4612.
2. Hindman N., Strauss D. Algebra in the Stone-Cech Compactification. – 2nd edition, de Gruyter, 2012. 3. Mazurov V.D., Khukhro E.I. (eds), Unsolved problems in group theory, the Kourovka notebook. – 13-th augmented edition, Novosibirsk, 1995. 4. Protasov I., Banakh T. Ball structures and colorings of groups and graphs. – Math. Stud. Monogr. Ser., V.11, VNTL, Lviv, 2003. |
Pages |
104-106
|
Volume |
44
|
Issue |
1
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |