Initial-boundary-value problem for linear elliptic-parabolic-pseudoparabolic equations(in Ukrainian)

Author
M. M. Bokalo, H. P. Domanska
Lviv National University
Abstract
Well-posedness of the initial-boundary-value problem for linear elliptic-parabolic-pseudopa\-rabolic equations are proved. An estimate of the generalized solution of this problem are received.
Keywords
elliptic-parabolic-pseudoparabolic equation; degenerated pseudoparabolic equation
Reference
1. Sobolev S.L. Some new problems in mathematical physics// Izv. Akad. nauk SSSR. Ser. mat. – 1954. – V.18. – P. 3–50.

2. Barenblatt G.I., Zheltov Iv.P., Kochina I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks// Prykl. matem. i mehan. – 1960. – V.24, Ή5. – P. 58–73.

3. Korpusov Μ.Ξ., Sveshnikov ΐ.G. Thredimentional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics// Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki. – 2003. – V.43, Ή12. – P. 1835–1869.

4. Showalter R.E. Degenerate evolution equations and applications// Indiana Univ. Math. J. – 1974. – V.23, Ή8. – P. 655–677.

5. Pao C.V. Boundary-value problems of a degenerate Sobolev-type differential equation// Can. Math. Bull. – 1977. – V.20, Ή2. – P. 221–228.

6. Kuttler K.L. The Galerkin method and degenerate evolution equations// Journal of Mathematical Analysis and Applications. – 1985. – V.107. – P. 396–413.

7. Showalter R.E. Monotone operators in Banach space and nonlinear partial differential equations. – Mathematical surveys and monographs, 49, Amer. Math. Soc., Providence, 1997.

8. Favini A., Yagi A. Degenerate differential equations in Banach spaces. – New York etc.: Marcel Dekker, Inc., 1999.

9. Μΰlovichko V.ΐ. On boundary value problems for degenerate pseudoparabolic and pseudohyperbolic systems// Differents. uravnenija. – 1991. – V.27, Ή12. – P. 2120–2124.

10. Kozhanov ΐ.I. Degenerate equations of Sobolev type// Neklassicheskije uravnenija matematicheskoj fiziki: III Sibirskij kongress po prikladnoj i industrialnij matematike, 1998. – P. 4–13. (in Russian)

11. Egorov I.Ε., Pjatkov S.G., Popov S.V. Nonclassical differential-operator equations. – Novosibirsk: Nauka, 2000. (in Russian)

12. Bokalo M.M., Pauchok I.B. On the well-posedness of a Fourier problem for nonlinear parabolic equations of higher order with variable exponents of nonlinearity// Mat. Stud. – 2006. – V.24, Ή1. – P. 25–48. (in Ukrainian)
Pages
193-197
Volume
40
Issue
2
Year
2013
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue