Initial-boundary-value problem for linear elliptic-parabolic-pseudoparabolic equations(in Ukrainian) |
|
Author |
mm.bokalo@gmail.com, h.domanska@gmx.net
Lviv National University
|
Abstract |
Well-posedness
of the initial-boundary-value problem
for linear elliptic-parabolic-pseudopa\-rabolic equations are proved.
An estimate of the generalized solution of this problem are received.
|
Keywords |
elliptic-parabolic-pseudoparabolic equation; degenerated pseudoparabolic equation
|
Reference |
1. Sobolev S.L. Some new problems in mathematical physics// Izv. Akad. nauk SSSR. Ser. mat. 1954.
V.18. P. 350.
2. Barenblatt G.I., Zheltov Iv.P., Kochina I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks// Prykl. matem. i mehan. 1960. V.24, Ή5. P. 5873. 3. Korpusov Μ.Ξ., Sveshnikov ΐ.G. Thredimentional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics// Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki. 2003. V.43, Ή12. P. 18351869. 4. Showalter R.E. Degenerate evolution equations and applications// Indiana Univ. Math. J. 1974. V.23, Ή8. P. 655677. 5. Pao C.V. Boundary-value problems of a degenerate Sobolev-type differential equation// Can. Math. Bull. 1977. V.20, Ή2. P. 221228. 6. Kuttler K.L. The Galerkin method and degenerate evolution equations// Journal of Mathematical Analysis and Applications. 1985. V.107. P. 396413. 7. Showalter R.E. Monotone operators in Banach space and nonlinear partial differential equations. Mathematical surveys and monographs, 49, Amer. Math. Soc., Providence, 1997. 8. Favini A., Yagi A. Degenerate differential equations in Banach spaces. New York etc.: Marcel Dekker, Inc., 1999. 9. Μΰlovichko V.ΐ. On boundary value problems for degenerate pseudoparabolic and pseudohyperbolic systems// Differents. uravnenija. 1991. V.27, Ή12. P. 21202124. 10. Kozhanov ΐ.I. Degenerate equations of Sobolev type// Neklassicheskije uravnenija matematicheskoj fiziki: III Sibirskij kongress po prikladnoj i industrialnij matematike, 1998. P. 413. (in Russian) 11. Egorov I.Ε., Pjatkov S.G., Popov S.V. Nonclassical differential-operator equations. Novosibirsk: Nauka, 2000. (in Russian) 12. Bokalo M.M., Pauchok I.B. On the well-posedness of a Fourier problem for nonlinear parabolic equations of higher order with variable exponents of nonlinearity// Mat. Stud. 2006. V.24, Ή1. P. 2548. (in Ukrainian) |
Pages |
193-197
|
Volume |
40
|
Issue |
2
|
Year |
2013
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |