Initial-boundary-value problem for linear elliptic-parabolic-pseudoparabolic equations(in Ukrainian) |
|
Author |
mm.bokalo@gmail.com, h.domanska@gmx.net
Lviv National University
|
Abstract |
Well-posedness
of the initial-boundary-value problem
for linear elliptic-parabolic-pseudopa\-rabolic equations are proved.
An estimate of the generalized solution of this problem are received.
|
Keywords |
elliptic-parabolic-pseudoparabolic equation; degenerated pseudoparabolic equation
|
Reference |
1. Sobolev S.L. Some new problems in mathematical physics// Izv. Akad. nauk SSSR. Ser. mat. – 1954. –
V.18. – P. 3–50.
2. Barenblatt G.I., Zheltov Iv.P., Kochina I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks// Prykl. matem. i mehan. – 1960. – V.24, №5. – P. 58–73. 3. Korpusov М.О., Sveshnikov А.G. Thredimentional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics// Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki. – 2003. – V.43, №12. – P. 1835–1869. 4. Showalter R.E. Degenerate evolution equations and applications// Indiana Univ. Math. J. – 1974. – V.23, №8. – P. 655–677. 5. Pao C.V. Boundary-value problems of a degenerate Sobolev-type differential equation// Can. Math. Bull. – 1977. – V.20, №2. – P. 221–228. 6. Kuttler K.L. The Galerkin method and degenerate evolution equations// Journal of Mathematical Analysis and Applications. – 1985. – V.107. – P. 396–413. 7. Showalter R.E. Monotone operators in Banach space and nonlinear partial differential equations. – Mathematical surveys and monographs, 49, Amer. Math. Soc., Providence, 1997. 8. Favini A., Yagi A. Degenerate differential equations in Banach spaces. – New York etc.: Marcel Dekker, Inc., 1999. 9. Маlovichko V.А. On boundary value problems for degenerate pseudoparabolic and pseudohyperbolic systems// Differents. uravnenija. – 1991. – V.27, №12. – P. 2120–2124. 10. Kozhanov А.I. Degenerate equations of Sobolev type// Neklassicheskije uravnenija matematicheskoj fiziki: III Sibirskij kongress po prikladnoj i industrialnij matematike, 1998. – P. 4–13. (in Russian) 11. Egorov I.Е., Pjatkov S.G., Popov S.V. Nonclassical differential-operator equations. – Novosibirsk: Nauka, 2000. (in Russian) 12. Bokalo M.M., Pauchok I.B. On the well-posedness of a Fourier problem for nonlinear parabolic equations of higher order with variable exponents of nonlinearity// Mat. Stud. – 2006. – V.24, №1. – P. 25–48. (in Ukrainian) |
Pages |
193-197
|
Volume |
40
|
Issue |
2
|
Year |
2013
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |