Bari-Markus property for Dirac operators

Author
Ya. V. Mykytyuk, D. V. Puyda/div>
Lviv National University
Abstract
We prove the Bari--Markus property for spectral projectors of non-self-adjoint Dirac operators on $(0,1)$ with square-integrable matrix-valued potentials and some separated boundary conditions.
Keywords
Dirac operators; spectral projectors; Bari--Markus property
Reference
1. P. Djakov, B. Mityagin, Bari–Markus property for Riesz projections of 1D periodic Dirac operators, Math. Nachr., 283 (2010), 443–462.

2. P. Djakov, B. Mityagin, Bari–Markus property for Riesz projections of Hill operators with singular potentials, Contemporary Math., 481 (2009), 59–80.

3. P. Djakov, B. Mityagin, Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions, Indiana University Math. Journ., 61 (2012), 359–398.

4. I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-self-adjoint operators, Transl. Math. Monographs, V.18, Amer. Math. Soc., Providence, R.I., 1969.

5. Ya.V. Mykytyuk, D.V. Puyda, Inverse spectral problems for Dirac operators on a finite interval, J. Math. Anal. Appl., 386 (2012), 177–194.

6. Ya.V. Mykytyuk, N.S. Trush, Inverse spectral problems for Sturm–Liouville operators with matrix-valued potentials, Inverse Problems, 26 (2010), ¹015009.

7. N. Trush, Asymptotics of singular values of entire matrix-valued sine-type functions, Mat. Stud., 30 (2008), ¹1, 95–97.

8. T. Kato, Perturbation theory for linear operators, Berlin-Heidelberg-New York: Springer-Verlag, 1966.
Pages
165-171
Volume
40
Issue
2
Year
2013
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue