Bari-Markus property for Dirac operators |
|
Author | |
Abstract |
We prove the Bari--Markus property for spectral projectors of non-self-adjoint Dirac operators on $(0,1)$ with square-integrable matrix-valued potentials and some separated boundary conditions.
|
Keywords |
Dirac operators; spectral projectors; Bari--Markus property
|
Reference |
1. P. Djakov, B. Mityagin, Bari–Markus property for Riesz projections of 1D periodic Dirac operators, Math.
Nachr., 283 (2010), 443–462.
2. P. Djakov, B. Mityagin, Bari–Markus property for Riesz projections of Hill operators with singular potentials, Contemporary Math., 481 (2009), 59–80. 3. P. Djakov, B. Mityagin, Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions, Indiana University Math. Journ., 61 (2012), 359–398. 4. I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-self-adjoint operators, Transl. Math. Monographs, V.18, Amer. Math. Soc., Providence, R.I., 1969. 5. Ya.V. Mykytyuk, D.V. Puyda, Inverse spectral problems for Dirac operators on a finite interval, J. Math. Anal. Appl., 386 (2012), 177–194. 6. Ya.V. Mykytyuk, N.S. Trush, Inverse spectral problems for Sturm–Liouville operators with matrix-valued potentials, Inverse Problems, 26 (2010), ¹015009. 7. N. Trush, Asymptotics of singular values of entire matrix-valued sine-type functions, Mat. Stud., 30 (2008), ¹1, 95–97. 8. T. Kato, Perturbation theory for linear operators, Berlin-Heidelberg-New York: Springer-Verlag, 1966. |
Pages |
165-171
|
Volume |
40
|
Issue |
2
|
Year |
2013
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |