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We prove the Bari–Markus property for spectral projectors of non-self-adjoint Dirac oper-
ators on (0, 1) with square-integrable matrix-valued potentials and some separated boundary
conditions.

Я. В. Микитюк, Д. В. Пуйда. Свойство Бари–Маркуса для операторов Дирака // Мат.
Студiї. – 2013. – Т.40, №2. – C.165–171.

Доказывается свойство Бари–Маркуса для спектральных проекторов несамосопряжен-
ного оператора Дирака на интервале (0, 1) с квадратично-интегрируемым матричным по-
тенциалом и некоторыми разделенными краевыми условиями.

1. Introduction and main results. In the Hilbert space H := L2((0, 1),C2r), we study
the non-self-adjoint Dirac operator TQ := J d

dx
+Q on the domain

D(TQ) :=
{

(y1, y2)> | y1, y2 ∈ W 1
2 ((0, 1),Cr), y1(0) = y2(0), y1(1) = y2(1)

}
.

Here,

J :=
1

i

(
I 0
0 −I

)
, Q :=

(
0 q1

q2 0

)
,

I := Ir is the r×r identity matrix, q1, q2 ∈ L2((0, 1),Mr),Mr is the set of r×r matrices with
complex entries and W 1

2 ((0, 1),Cr) is the Sobolev space of Cr-valued functions. All functions
Q as above form the set Q2 := {Q ∈ L2((0, 1),M2r) | JQ(x) = −Q(x)J a.e. on (0, 1)} and
will be called potentials of the operators TQ.

The spectrum σ(TQ) of the operator TQ consists of countably many isolated eigenvalues
of finite algebraic multiplicities. We denote by λj := λj(Q), j ∈ Z, the pairwise distinct
eigenvalues of the operator TQ arranged by non-decreasing of their real — and then, if equal,
imaginary — parts. For definiteness, we also assume that Reλ0 ≤ 0 < Reλ1. One can prove
using the standard technique based on Rouche’s theorem that the numbers λj, j ∈ Z, satisfy
the condition

sup
n∈Z

∑
λj∈∆n

1 <∞ (1)

and the asymptotics ∑
n∈Z

∑
λj∈∆n

|λj − πn|2 <∞, (2)
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where ∆n := {λ ∈ C | πn − π/2 < Reλ ≤ πn + π/2}, n ∈ Z. We then denote by Pλj the
spectral projector of the operator TQ corresponding to the eigenvalue λj (see [8, Chap.3]).
We write

Pn :=
∑
λj∈∆n

Pλj , n ∈ Z,

for the spectral projector of TQ corresponding to the strip ∆n.
In particular, in the free case Q = 0 one has σ(T0) = {πn}n∈Z. We then write P0

n for the
spectral projector of the free operator T0 corresponding to the strip ∆n, n ∈ Z.

The main result of this paper is the following theorem.

Theorem 1. For every Q ∈ Q2, we have∑
n∈Z

∥∥Pn − P0
n

∥∥2
<∞ . (3)

Inequality (3) is called the Bari–Markus property of spectral projectors of the operator TQ.
In the scalar case r = 1, the Bari–Markus property for the operator TQ, as well as for

the operators with periodic and anti-periodic boundary conditions, was established in [1] to
prove the unconditional convergence of spectral decompositions for such operators. Therein,
P. Djakov and B. Mityagin used a technique based on Fourier representations of Dirac
operators. This technique was further developed to prove the similar property for Dirac
operators with regular boundary conditions in [3]. For Hill operators with singular poten-
tials, the Bari–Markus property was established in [2].

A different and simpler technique based on some convenient representation of resolvents
of the operators under consideration was used in [6] to establish the Bari–Markus property
for Sturm–Liouville operators with matrix-valued potentials (see [6, Lemma 2.12]). Therein,
this result was used to solve the inverse spectral problem for such operators. For the same
purpose, the Bari–Markus property was established for self-adjoint Dirac operators with
square-integrable matrix-valued potentials in [5].

In the present paper, we use the technique suggested in [6] to establish the Bari–Markus
property for non-self-adjoint Dirac operators with square-integrable matrix-valued potentials.
This result can be used to study the inverse spectral problems for non-self-adjoint Dirac
operators on a finite intervals.

The paper is organized as follows. In the reminder of this sections, we introduce some
notation that is used in this paper. In Sections 2 and 3, we provide some preliminary results
and prove Theorem 1, respectively.

2. Notations. Throughout this paper, we identify Mr with the Banach algebra of linear
operators in Cr endowed with the standard norm. If there is no ambiguity, we write simply
‖ · ‖ for norms of operators and matrices.

By L2((a, b),Mr) we denote the Banach space of all strongly measurable functions
f : (a, b)→Mr for which the norm

‖f‖L2 :=

(∫ b

a

‖f(t)‖2dt

)1/2

is finite. By G2(Mr) we denote the set of all measurable functionsK : [0, 1]2 →Mr such that
for all x, t ∈ [0, 1], the functions K(x, ·) and K(·, t) belong to L2((0, 1),Mr) and, moreover,
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the mappings [0, 1] 3 x 7→ K(x, ·) ∈ L2((0, 1),Mr) and [0, 1] 3 t 7→ K(·, t) ∈ L2((0, 1),Mr)
are continuous. The symbol G+

2 (Mr) stands for the set of all functions K ∈ G2(Mr) such
that K(x, t) = 0 a.e. in the triangle Ω− := {(x, t) | 0 < x < t < 1}. The superscript >
designates the transposition of vectors and matrices.

3. Preliminary results. In this section, we obtain some preliminary results and introduce
some auxiliary objects that will be used in this paper.

For an arbitrary potential Q ∈ Q2 and λ ∈ C, we denote by YQ(·, λ) ∈ W 1
2 ((0, 1),M2r)

the 2r × 2r matrix-valued solution of the Cauchy problem

J
d

dx
Y +QY = λY, Y (0, λ) = I2r. (4)

We set ϕQ(·, λ) := YQ(·, λ)Ja∗ and ψQ(·, λ) := YQ(·, λ)a∗, where a := 1√
2

(
I, −I

)
, so that

ϕQ(·, λ) and ψQ(·, λ) are the 2r × r matrix-valued solutions of the Cauchy problems

J
d

dx
ϕ+Qϕ = λϕ, ϕ(0, λ) = Ja∗, (5)

and J d
dx
ψ +Qψ = λψ, ψ(0, λ) = a∗, respectively. For an arbitrary λ ∈ C, we introduce the

operator ΦQ(λ) : Cr → H by the formula [ΦQ(λ)c](x) := ϕQ(x, λ)c, x ∈ [0, 1].
We set sQ(λ) := aϕQ(1, λ) and cQ(λ) := aψQ(1, λ), λ ∈ C. The function mQ(λ) :=

−sQ(λ)−1cQ(λ) will be called the Weyl–Titchmarsh function of the operator TQ. Note that
in the free case Q = 0 one has s0(λ) = (sinλ)I, c0(λ) = (cosλ)I and m0(λ) = −(cotλ)I.

The following proposition is a straightforward analogue of Lemma 2.1 in [5].

Proposition 1. For an arbitrary potential Q ∈ Q2 the following assertions are true:

(i) there exists a unique function KQ ∈ G+
2 (M2r) such that for every x ∈ [0, 1] and λ ∈ C,

ϕQ(x, λ) = ϕ0(x, λ) +

∫ x

0

KQ(x, s)ϕ0(s, λ) ds,

where ϕ0(·, λ) is a solution of (5) in the free case Q = 0;

(ii) there exist unique functions f1 := fQ,1 and f2 := fQ,2 from L2((−1, 1),Mr) such that
for every λ ∈ C,

sQ(λ) = (sinλ)I +
1√
2

∫ 1

−1

eiλsf1(s) ds, cQ(λ) = (cosλ)I +
1√
2

∫ 1

−1

eiλsf2(s) ds. (6)

In particular, Proposition 1 implies the following corollary

Corollary 1. For an arbitrary Q ∈ Q2 and λ ∈ C,

ΦQ(λ) = (I +KQ)Φ0(λ), (7)

where KQ is the integral operator with kernel KQ and I is the identity operator in H.

Using the first formula in (6) and repeating the proof of Theorem 3 in [7], one can also derive
the following statement.
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Corollary 2. The set of zeros of the entire function s̃Q(λ) := det sQ(λ) can be indexed
(counting multiplicities) by numbers n ∈ Z so that the corresponding sequence (ξn)n∈Z has
the asymptotics ξkr+j = πk + ωj,k, k ∈ Z, j ∈ {0, . . . , r − 1}, where the sequences (ωj,k)k∈Z
belong to `2(Z).

Now let ρ(TQ) denote the resolvent set of the operator TQ.

Lemma 1. For an arbitrary Q ∈ Q2 we have ρ(TQ) = {λ ∈ C | ker sQ(λ) = {0}} and for
each λ ∈ ρ(TQ),

(TQ − λI)−1 = ΦQ(λ)mQ(λ)ΦQ∗(λ)∗ + TQ(λ), (8)

where TQ is an entire operator-valued function. The spectrum of the operator TQ consists of
countably many isolated eigenvalues of finite algebraic multiplicities.

Proof. A direct verification shows that d
dx

(
JYQ∗(x, λ)∗JYQ(x, λ)

)
= 0. Therefore, taking into

account (4), we find that −JYQ∗(x, λ)∗JYQ(x, λ) = I2r for every x ∈ [0, 1] and thus

YQ(x, λ)JYQ∗(x, λ)∗ = J, x ∈ [0, 1].

Since J = Ja∗a+ a∗aJ , the latter can be rewritten as

ϕQ(x, λ)ψQ∗(x, λ)∗ − ψQ(x, λ)ϕQ∗(x, λ)∗ = J, x ∈ [0, 1]. (9)

Using (9), one can verify that for an arbitrary f ∈ H and λ ∈ C, the function

g(x, λ) = [TQ(λ)f ](x) := ψQ(x, λ)

∫ x

0

ϕQ∗(t, λ)∗f(t) dt+ ϕQ(x, λ)

∫ 1

x

ψQ∗(t, λ)∗f(t) dt

solves the Cauchy problem

Jy′ +Qy = λy + f, y1(0) = y2(0). (10)

Since for every c ∈ Cr, the function h(·, λ) := ϕQ(·, λ)c solves (10) with f = 0, it then follows
that a generic solution of (10) takes the form y = ϕQ(·, λ)c + TQ(λ)f , c ∈ Cr. If λ ∈ C is
such that the r × r matrix sQ(λ) := aϕQ(1, λ) is non-singular, then setting

c = −sQ(λ)−1cQ(λ)

∫ 1

0

ϕQ∗(t, λ)∗f(t) dt

we obtain that ay(1) = 0, i.e. y1(1) = y2(1). Therefore, every λ ∈ C such that ker sQ(λ) = {0}
is a resolvent point of the operator TQ and for such a λ one has

(TQ − λI)−1 = ΦQ(λ)mQ(λ)ΦQ∗(λ)∗ + TQ(λ).

To complete the proof, it remains to observe that the function y = ϕQ(·, λ)c is a non-zero
solution of the problem

Jy′ +Qy = λy, y1(0) = y2(0), y1(1) = y2(1)

if and only if c ∈ ker sQ(λ) \ {0}. Since the values of the resolvent of the operator TQ are
compact operators, it follows that all spectral projectors Pλj , j ∈ Z, are finite dimensional. In
particular, it then follows (see, e.g., [4, Theorem 2.2]) that all eigenvalues of the operator TQ
are of finite algebraic multiplicities.
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From Lemma 1 we obtain that eigenvalues of the operator TQ are zeros of the entire
function s̃Q(λ) := det sQ(λ). In view of Corollary 2 we then obtain the following consequence.

Corollary 3. For an arbitrary potential Q ∈ Q2, eigenvalues of the operator TQ satisfy
condition (1) and asymptotics (2).

Now we can introduce the spectral projectors of the operator TQ as explained in the
previous section. Formulas (7) and (8) will serve as an efficient tool to prove Theorem 1.

4. Proof of Theorem 1. We start with the following auxiliary lemma.

Lemma 2. For an arbitrary λ ∈ C, let an operator A(λ) : L2((−1, 1),Mr) → Mr act by
the formula

A(λ)f :=
1√
2

∫ 1

−1

eiλtf(t) dt.

Then for an arbitrary f ∈ L2((−1, 1),Mr) and λ ∈ T0 := {λ ∈ C | |λ| = 1},∑
n∈Z

‖A(πn+ λ)f‖2 ≤ 9r‖f‖2
L2
. (11)

Proof. Let f ∈ L2((−1, 1),Mr), λ ∈ T0 and ‖S‖2 denote the Hilbert–Schmidt norm of a
matrix S ∈Mr. Since

{
1√
2
eiπnt

}
n∈Z

is an orthonormal basis in L2(−1, 1), it follows that

∑
n∈Z

‖A(πn)f‖2 ≤
∑
n∈Z

‖A(πn)f‖2
2 =

∫ 1

−1

‖f(x)‖2
2 dx ≤ r

∫ 1

−1

‖f(x)‖2 dx.

Taking into account that A(πn + λ)f = A(πn)f1 with f1(t) := eiλtf(t) and that ‖f1‖L2 <
3‖f‖L2 , we then arrive at (11).

Remark 1. In the notation of the above lemma, formulas (6) can be rewritten as

sQ(λ) = (sinλ)I + A(λ)f1, cQ(λ) = (cosλ)I + A(λ)f2. (12)

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Using formula (8) and the asymptotics (2) of eigenvalues of the ope-
rator TQ, we obtain that there exists N ∈ N such that for every n ∈ Z with |n| > N ,

Pn := − 1

2πi

∮
Tn

ΦQ(λ)mQ(λ)ΦQ∗(λ)∗dλ, P0
n := − 1

2πi

∮
Tn

Φ0(λ)m0(λ)Φ0(λ)∗dλ,

where Tn := {λ ∈ C | |λ− πn| = 1}. Therefore, for each n ∈ Z such that |n| > N ,

‖Pn − P0
n‖ =

∥∥∥∥− 1

2πi

∮
Tn

(
ΦQ(λ)mQ(λ)ΦQ∗(λ)∗ − Φ0(λ)m0(λ)Φ0(λ)∗

)
dλ

∥∥∥∥ ≤ ‖αn‖+ ‖βn‖,

where
αn := − 1

2πi

∮
Tn

ΦQ(λ)(mQ(λ)−m0(λ))ΦQ∗(λ)∗dλ (13)

and
βn := − 1

2πi

∮
Tn

(
ΦQ(λ)m0(λ)ΦQ∗(λ)∗ − Φ0(λ)m0(λ)Φ0(λ)∗

)
dλ.
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The theorem will be proved once we show that
∑
|n|>N ‖αn‖2 <∞ and

∑
|n|>N ‖βn‖2 <∞.

Let us prove the claim for (αn) first. Taking into account (12), observe that

mQ(λ)−m0(λ) = sQ(λ)−1 [(cotλ)A(λ)f1 − A(λ)f2] , (14)

where A(λ) is defined in Lemma 2. Note that by virtue of the Riemann–Lebesgue lemma,
without loss of generality we may assume that

sup
|n|>N

sup
λ∈Tn

‖A(λ)f1‖ ≤
1

4
.

Since for every λ ∈ Tn one has | sinλ| ≥ 1/2, in view of the first formula in (12) it then holds

‖sQ(λ)−1‖ ≤ | sinλ|−1(1− | sinλ|−1‖A(λ)f1‖)−1 ≤ 4, λ ∈ Tn, |n| > N.

Since | cotλ| ≤
√

3 as λ ∈ Tn, from (14) we then obtain that

‖mQ(λ)−m0(λ)‖2 ≤ 64(‖A(λ)f1‖2 + ‖A(λ)f2‖2), λ ∈ Tn, |n| > N. (15)

Next, taking into account (7), observe that for an arbitrary Q ∈ Q2 and λ ∈ Tn one has

‖ΦQ(λ)‖ ≤ ‖I +KQ‖‖Φ0(λ)‖ ≤ 2‖I +KQ‖. (16)

By virtue of the Cauchy–Bunyakovsky inequality we then obtain from (13), (15) and (16)
that for every n ∈ Z such that |n| > N ,

‖αn‖2 ≤ C

∫ 2π

0

(
‖A(πn+ eit)f1‖2 + ‖A(πn+ eit)f2‖2

)
dt

with some C > 0. In view of Lemma 2 we then obtain that
∑
|n|>N ‖αn‖2 <∞.

Thus it remains only to prove that
∑
|n|>N ‖βn‖2 < ∞. For this purpose, take into

account (7) and observe that

ΦQ(λ)m0(λ)ΦQ∗(λ)∗ − Φ0(λ)m0(λ)Φ0(λ)∗ =

= KQΦ0(λ)m0(λ)Φ0(λ)∗ + Φ0(λ)m0(λ)Φ0(λ)∗K∗Q∗ +KQΦ0(λ)m0(λ)Φ0(λ)∗K∗Q∗ .

Therefore, βn = KQP0
n + [KQ∗P0

n]∗ + KQP0
nK∗Q∗ and thus the claim will be proved once we

show that for an arbitrary Q ∈ Q2, ∑
|n|>N

‖KQP0
n‖2 <∞. (17)

To this end, note that the operator KQ belongs to the Hilbert–Schmidt class B2 and that
the sequence (P0

n)n∈Z consists of pairwise orthogonal projectors. Therefore, we get∑
n∈Z

‖KQP0
n‖2 ≤

∑
n∈Z

‖KQP0
n‖2
B2 ≤ ‖KQ‖

2
B2 .

Hence (17) follows and the proof is complete.
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