Two-radii theorem for solutions of some mean value equations |
|
Author |
odtrofimenko@gmail.com
Donetsk National University
|
Abstract |
A description of solutions of some integral equations has been obtained. A two-radii theorem is obtained as well.
|
Keywords |
mean value theorem; spherical means; two-radii theorem
|
Reference |
1. L. Zalcman, A bibliographic survey of the Pompeiu problem, in: B.Fuglede et al. (ads.), Approximation
by solutions of partial differential equations, Kluwer Academic Publishers: Dordrecht, 1992, 185–194.
2. L. Zalcman, Supplementary bibliography to “A bibliographic survey of the Pompeiu problem”, Radon Transforms and Tomography, Contemp. Math., 278 (2001), 69–74. 3. L. Zalcman, Mean values and differential equations, Israel J. Math., 14 (1973), 339–352. 4. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly, 87 (1980), ¹3, 161–175. 5. V.V. Volchkov, Integral geometry and convolution equation, Dordrecht-Boston-London: Kluwer Academic Publishers, 2003, 454 p. 6. V.V. Volchkov, Vit.V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the heisenberg group. Series: Springer Monographs in Mathematics, 2009, 671 p. 7. C.A. Berenstein, D.C. Struppa, Complex analysis and convolution equations, in “Several Complex Variables, V”, (G.M.Henkin, Ed.) Encyclopedia of Math. Sciences, 54 (1993), 1–108. 8. I. Netuka, J. Vesely, Mean value property and harmonic functions, Classical and modern potential theory and applications, Kluwer Acad. Publ., 1994, 359–398. 9. J. Delsarte, Lectures on topics in mean periodic functions and the two-radius theorem, Tata Institute: Bombay, 1961. 10. O.D. Trofymenko, Generalization of the mean value theorem for polyanalytic functions in the case of a circle and a disk, Bulletin of Donetsk University, 1 (2009), P. 28–32. (in Ukrainian) 11. L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rat. Anal. Mech., 47 (1972), 237–254. 12. V.V. Volchkov, New mean value theorems for polyanalytic functions, Mat. Zametki, 56 (1994), ¹3, 20–28. 13. M.O. Reade, A theorem of Fedoroff, Duke Math.J., 18 (1951), 105–109. 14. T. Ramsey, Y. Weit, Mean values and classes of harmonic functions, Math. Proc. Camb. Dhil. Soc., 96 (1984), 501–505. 15. B.G. Korenev, Introduction to the theory of Bessel functions. M.: Nauka, 1971, 288 p. 16. O.D. Trofymenko, Uniqueness theorem for solutions of some mean value equations, Donetsk: Transactions of the Institute of Applied Mathematics and Mechanics, 24 (2012), 234–242. |
Pages |
137-143
|
Volume |
40
|
Issue |
2
|
Year |
2013
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |