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A description of solutions of some integral equations has been obtained. A two-radii theorem
is obtained as well.

О. Д. Трофименко. Теорема о двух радиусах для решений некоторых уравнений средних
значений // Мат. Студiї. – 2013. – Т.40, №2. – C.137–143.

В работе получено описание решений некоторых интегральных уравнений, а также
теорема о двух радиусах.

1. Introduction. Characterization of solutions for differential equations in terms of various
integral mean values has been studied by many authors (see [1]–[9] and references in these
papers).

The classes of functions on subsets of the compact plane that satisfy the conditions of
the next type is studied in this paper

m−1∑
n=s

r2n+2

2(n− s)!(n+ 1)!
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∂z

)n−s(
∂

∂z̄

)n
f(z) =

1

2π

∫ ∫
|ζ−z|≤r

f(ζ)(ζ − z)sdξdη, (1)

where m ∈ N and s ∈ {0, . . . ,m − 1} are fixed. Also r is fixed or belongs to the set of two
elements.

We point out that this equation is satisfied for m-analytic functions (see [10]). A function
from C2m−2−s in some domain, that satisfies (1) with all possible z and r is of great interest.

The main results of the present paper are the following ones.

1) A description of all smooth solutions for (1) in a disk with radius R > r with fixed r is
obtained (see Theorem 1 below).

2) A two-radii theorem is obtained. It turns out that this theorem characterizes the class
of solutions for the equation (

∂

∂z

)m−s(
∂

∂z̄

)m
f = 0 (2)

in terms of equation (1) (see Theorem 2).
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Note that the case s ≥ m that corresponds to the zero integral mean value in the right
hand side of (1), has been studied in papers of L. Zalcman and V. V. Volchkov (see [3], [11]–
[12]). The first results that deal with the mean value theorem for polyanalytic functions, are
contained in [13]–[14].

2. Main results. Let Jν be the Bessel function of the first kind with index ν. For ρ ≥ 0,
λ ∈ C, k ∈ Z, let

Φλ,η,k(ρ) =

(
d

dz

)η
(Jk(zρ)) |z=λ.

Let also

gr(z) =
Js+1(rz)

(zr)s+1
−

m−1∑
n=s

(zr)2(n−s)(−1)n−s

(n+ 1)!(n− s)!22n−s+1
,

and Z(gr) = {z ∈ C : gr(z) = 0}, Zr = Z(gr) \ ({z ∈ C : Re z > 0} ∪ {z ∈ C : Im z ≥ 0,
Re z = 0}). For λ ∈ Zr by the symbol nλ we denote the multiplicity of zero λ of the entire
function gr.

Let DR = {z ∈ C : |z| < R}. For any function f ∈ C(DR) we assign the Fourier series

f(z) ∼
∞∑

k=−∞

fk(ρ)eikϕ, (3)

where
fk(ρ) =

1

2π

∫ π

−π
f(ρeit)e−iktdt (4)

and 0 ≤ ρ < R.
The next result gives a description for all solutions (1) in the class C∞(DR) with fixed

r < R.

Theorem 1. Let r > 0, m ∈ N and s ∈ {0, . . . ,m − 1} be fixed. Let also R > r and
a function f belong to C∞(DR). Then the following statements are equivalent.

1) With |z| < R− r equality (1) holds.

2) For any k ∈ Z on [0, R) the next equality holds

fk(ρ) =
∑

0≤p≤s−1

p+k≥0

ak,pρ
2p+k +

m−s−1∑
p=0

bk,pρ
2p+s+|k+s| +

∑
λ∈Zr

nλ−1∑
η=0

cλ,η,kΦλ,η,k(ρ) (5)

where ak,p ∈ C, bk,p ∈ C, cλ,η,k ∈ C and

cλ,η,k = O(|λ|−α) (6)

as λ→∞ for any fixed α > 0.

Note that analogues of Theorem 1 for other equations related to ball mean values, were
obtained by V. V. Volchkov for the first time (see [5]–[6] and the references in these papers).

Then let Z(r1, r2) = Zr1 ∩ Zr2 .
We formulate now the local two-radii theorem for equation (1).

Theorem 2. Let r1, r2 > 0, m ∈ N and s ∈ {0, . . . ,m− 1} be fixed. Then:
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1) if R > r1 + r2, Z(r1, r2) = ∅, f ∈ C2m−2−s(DR) and (1) holds with |z| < R− r, then f
satisfies f ∈ C∞(DR) and (2);

2) if max{r1, r2} < R < r1 +r2 and Z(r1, r2) 6= ∅, then there is f ∈ C∞(DR), that satisfies
(1) with |z| < R− r and does not satisfy (2).

As regards other two-radii theorems see papers [1]–[9] and references in these papers.

3. Auxiliary statements. In this section we will obtain some auxiliary statements, that
are necessary for the proof of main results.

First of all, we note that the function gr is an even entire function of exponential type,
that grows as a polynomial on the real axis (see, for example, [15], § 29). This together with
the Hadamard theorem implies that the set Zr is infinite.

Lemma 1. Let λ ∈ Zr and |λ| > 4/r. Then

|Imλ| ≤ c1 ln(1 + |λ|), (7)

where the constant c1 does not depend on λ. Moreover, for all λ with sufficiently large
absolute value

|g′r(λ)| > c2

|λ|
, (8)

where c2 does not depend on λ. In addition, all zeros of gr with sufficiently large absolute
values are simple.

Proof. By the condition gr(λ) = 0 and the asymptotic expansion for Js+1(λr) as λ → ∞
(see [15], § 29) we have√

2

πλr

(
cos
(
λr − πs

2
− 3π

4

)
−4(s2 + 2s+ 1)− 1

8λr
sin
(
λr − πs

2
− 3π

4

))
+

+O
(
(λr)−2e|Im(λr)|) = (λr)s+1

m−1∑
n=s

(λr)2n−2s(−1)n−s−1

(2n+ 2)(n− s)!n!22n−s .

Hence, using λ ∈ Zr, we obtain

ei(λr−
πs
2
−π

4
)

2i
+O

(
e|Im(λr)|

λr

)
=

√
πλr

2

m−1∑
n=s

(λr)2n−s+1(−1)n−s−1

(2n+ 2)(n− s)!n!22n−s .

Denote by p1(λr) the polynomial from the right hand side of the latter equation. Then

ei(λr−
πs
2
−π

4
) = 2ip1(λr) +O

(
2ie|Im(λr)|

λr

)
.

Let us estimate

e|Im(λr)| ≤ |2ip1(λr)|+ |2i|e
|Im(λr)|

λr
≤ |2ip1(λr)|+ |i|e

|Im(λr)|

2
.

Now one has e|Im(λr)| ≤ 4|p1(λr)| and inequality (7) is proved. Inequality (8) can be
proved in a similar way, by using [15], formula (6.3).
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Lemma 2. Let λ ∈ C, f(z) = eiλ(x cosα+y sinα), r > 0. Then for z ∈ C we have∫∫
|ζ−z|≤r

f(ζ)(ζ − z)sdξdη −
m−1∑
n=s

2πr2n+2

2(n− s)!(n+ 1)!

(
∂

∂z

)n−s(
∂

∂z̄

)n
f(z) =

= 2πgr(λ)eiαsis+2 r
s+1

λ
eiλ(x cosα+y sinα).

Proof. We substitute the function eiλ(x cosα+y sinα) to the right hand side of equation (1).
First, we have∫∫

|w|≤r

f(w + z)wsdudv =

∫∫
|w|≤r

eiλ((x+u) cosα+(y+v) sinα)wsdudv =

= eiλ(x cosα+y sinα)

∫ π

−π

∫ r

0

(
ρeiϕ

)s
eiλρ cos(ϕ−α)ρdϕdρ.

Now we make the substitution t = ϕ− α. Then

eiλ(x cosα+y sinα)eiαs
∫ π

−π

∫ r

0

ρs+1eitseiλρ cos tdtdρ =

= eiλ(x cosα+y sinα)eiαs
∫ r

0

ρs+1(−1)

∫ π

−π
e−i(t+

π
2

)sei
π
2
seiλρ sin(π

2
+t)d

(π
2

+ t
)
dρ.

Continuing the consideration, we obtain

eiλ(x cosα+y sinα)eiαs
∫ π

−π

∫ r

0

ρs+1eitseiλρ cos tdtdρ =

= eiλ(x cosα+y sinα)eiαsis2π(−1)

∫ r

0

ρs+1Js(λρ)dρ.

Now properties of the Bessel function Js(z) imply

eiλ(x cosα+y sinα)eiαsis(−2π)
1

λs+2

∫ r

0

(λρ)s+1Js(λρ)d(λρ) =

= eiλ(x cosα+y sinα)eiαsis
(−2π)

λ
rs+1Js+1(λ).

Then we substitute the function eiλ(x cosα+y sinα) to the left hand side of equation (1).

2π
m−1∑
n=s

r2n+2

(2n+ 2)(n− s)!n!

(
∂

∂z

)n−s(
∂

∂z̄

)n (
eiλ(x cosα+y sinα)

)
=

= 2π
m−1∑
n=s

r2n+2

(2n+ 2)(n− s)!n!

i2n−s

22n−sλ
2n−seiαseiλ(x cosα+y sinα).

It is clear that the difference of the obtained expressions for the right and left hand sides
has the form 2πgr(λ)eiαsis+2 rs+1

λ
eiλ(x cosα+y sinα).
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Corollary 1. Let λ ∈ Zr, η ∈ {0, ..., nλ−1}, α ∈ R1. Then the function
(
∂
∂z

)η
eiλ(x cosα+y sinα)

satisfies (1) for all z ∈ C. The same statement is true for the function Φλ,η,k(ρ)eikϕ with any
k ∈ Z.

Proof. The corollary follows from Lemma 2 and [5, formula (1.5.29)].

Lemma 3. Let m ∈ N and s ∈ {0, . . . ,m − 1} be fixed. Then f ∈ C2m−s(DR) satisfies (2)
if and only if for all k ∈ Z and ρ ∈ [0, R) the following equality is true

fk(ρ) =
∑

0≤p≤s−1

p+k≥0

ak,pρ
2p+k +

m−s−1∑
p=0

bk,pρ
2p+s+|k+s|, (9)

where ak,p ∈ C and bk,p ∈ C.

Proof. In the case where bk,p = 0 and the equality
(
∂
∂z̄

)m
f = 0 is considered instead of (2)

a similar statement was proved in [10]. In our case the proof is similar.

Lemma 4. Let m ∈ N and s ∈ {0, . . . ,m−1} be fixed. Assume that a function f ∈ C∞(DR)
satisfies (1) with fixed r < R and all z ∈ DR−r. Let f = 0 in Dr. Then f ≡ 0.

Proof. The statement of Lemma 4 is a special case Theorem 1 from [16].

4. Proof of Theorem 1. Sufficiency. First, let f ∈ C∞(DR) and equality (5) hold on [0, R)
for any k ∈ Z with the coefficients, that satisfy (6). From Lema 2 and Corollary 1 we see,
that the function fk(ρ)eikϕ satisfies (1) with |z| < R−r. Because of the arbitrariness of k ∈ Z
this together with (3), (4) implies (see, for example, [5, Section 1.5.2] that the function f
also satisfies (1) with |z| < R− r. Hence, implication 2) ⇒ 1) is proved.

Now we prove the reverse statement.
Let E ′\(C) denote the space of radial compactly supported distributions on C. Let f ∈

C∞(DR) and assume that equality (1) holds for |z| < R − r. From [5, statement 1.5.6] the
functions Fk(z) = fk(ρ)eikϕ satisfy (1) for |z| < R − r. Using the Paley-Wiener theorem for
the spherical transform (see [5, Section 3.2.1 and Theorem 1.6.5]), we define the distribution
T ∈ E ′\(C) with support in Dr by the following formula T̃ (z) = gr(z), z ∈ C. A calculation
shows that equality (1) holds for the function Fk with |z| < R− r. This is equivalent to the
following convolution equation

Fk ∗
(
∂

∂z

)m−s(
∂

∂z̄

)m
T = 0 (10)

in DR−r.

We solve this equation (10) using Lemmas 1–4. Then we have (see [5, Section 3.2.4])
statement 2). Hence, the theorem is proved.

5. Proof of Theorem 2. Let R > r1 + r2, Z(r1, r2) = ∅, f ∈ C2m−2−s(DR) and assume
that equality (1) holds for |z| < R− r. Let us prove that f satisfies (2) in DR.

Without loss of generality we may assume that f ∈ C∞(DR) (the general case can be
reduced to this one by the standard smoothing, see [5, Section 1.3.3]).



142 O. D. TROFYMENKO

By Theorem 1, for any k ∈ Z and ρ ∈ [0, R) the next equality holds

fk(ρ)eikϕ =
∑

0≤p≤s−1

p+k≥0

ak,pρ
2p+keikϕ +

m−s−1∑
p=0

bk,pρ
2p+s+|k+s|eikϕ +

∑
λ∈Zr1

nλ−1∑
η=0

cλ,η,kΦλ,η,k(ρ)eikϕ, (11)

where ak,p ∈ C, bk,p ∈ C and the constants cλ,η,k satisfy (6).
Condition (6) implies that the series in (10) converges in the space C∞(DR) (see [5,

Lemma 3.2.7]).
Let

Fk(z) =

(
∂

∂z

)m−s(
∂

∂z̄

)m(
fk(ρ)eikϕ

)
=
∑
λ∈Zr1

nλ−1∑
η=0

cλ,η,k

(
∂

∂z

)m−s(
∂

∂z̄

)m
Φλ,η,k(ρ)eikϕ. (12)

In view of (11) we see that Fk ∗ T1 = 0 in DR−r1 , where the distribution T1 ∈ E ′\(C) with
support in Dr1 is determined by the equality T̃1(z) = gr1(z) (see [5, Theorem 1.6.5]).

Similarly, using Theorem 1 for r = r2, we conclude that Fk ∗ T2 = 0 in DR−r2 , where
T2 ∈ E ′\(C) with support in Dr2 is determined by the equality T̃2(z) = gr2(z).

If Z(r1, r2) = ∅ then from [5, Theorem 3.4.1] we conclude that Fk = 0.
Then it follows from (11) that the function fk(ρ)eikϕ satisfies (2) for all k ∈ Z. This means

that (see [5, proof of Lemma 2.1.4]) f satisfies (2). Thus the first statement of Theorem 2 is
proved.

We now establish the second statement.
If there is λ ∈ Z(r1, r2) then the function f(z) = Φλ,0,0(|z|) does not satisfy (2). In

addition, it satisfies (1) for all z ∈ C and r = r1, r2 (see Corollary 1). Then we henceforth
assume that Z(r1, r2) = ∅.

Suppose that T1, T2 ∈ E ′\(C) are defined as above. If R < r1 + r2, in view of [5, Theorem
3.4.9] we conclude, that there is a nonzero radial function f ∈ C∞(DR). It satisfies the
conditions f ∗ T1 = 0 in DR−r1 and f ∗ T2 = 0 in DR−r2 .

Applying [5, Theorem 3.2.3] we infer that for r = r1, r2 the following equality holds

f(z) =
∑
λ∈Zr

nλ−1∑
η=0

cλ,η(r)Φλ,η,0(|z|),

where z ∈ DR and the constants cλ,η(r) satisfy (5). Moreover, these constants are not all
equal to zero.

From this equality and Corollary 1 one deduces that f satisfies (1) for |z| < R − r,
r = r1, r2. Suppose now that f satisfies (2).

Then

f(z) =
∑

0≤p≤s−1

ap|z|2p +
m−s−1∑
p=0

bp|z|2p+2s

in DR and the convolutions f ∗ T1 and f ∗ T2 are polynomials. This means that f ∗ T1 =
f ∗ T2 = 0 in C.

Since Z(r1, r2) = ∅, from [5, Theorem 3.4.1] we infer that f = 0. This is impossible
because of the definition of f .

Therefore, the function f satisfies all the requirements of the second statement of Theo-
rem 2.
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