Limits of sequences of Darboux-like mappings

Author
O. Karlova
Yuriy Fedkovych Chernivtsi National University
Abstract
We call a mapping $f\colon X\to Y$ an $l$-Darboux mapping if the image of any arcwise connected subset of $X$ is connected. We prove that the class of $l$-Darboux $F_\sigma$-measurable mappings of a topological space to a metric space is closed with respect to uniform limits.
Keywords
uniform limit; Darboux function; $F_\sigma$-measurable function; weakly Gibson function
Reference
1. A. Bruckner, Differentiation of real functions, 2nd ed., Providence, RI: American Mathematical Society, 1994, 195 p.

2. R. Gibson, T. Natkaniec, Darboux-like functions, Real Anal. Exchange, 22 (1996-97), ¹2, 492–533.

3. O. Karlova, V. Mykhaylyuk, On Gibson functions with connected graphs, Math. Slovaca, 63 (2013), ¹3.

4. K. Kellum, Functions that separate $X\times\mathbb R$, Houston J. Math., 36 (2010), 1221–1226.

5. K. Kuratowski, Topology, V.1, M.: Mir, 1966. (in Russian)

6. A. Lindenbaum, Sur quelques proprieties des fonctions de variable reelle, Ann. Soc. Math. Polon., 6 (1927), 129–130.

7. H. Pawlak, R.J. Pawlak, On weakly Darboux functions and some problem connected with the Morrey monotonicity, Journal of Applied Analysis, 1 (1995), ¹2, 135–144.
Pages
132-136
Volume
40
Issue
2
Year
2013
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue