УДК 517.51

O. KARLOVA

LIMITS OF SEQUENCES OF DARBOUX-LIKE MAPPINGS

O. Karlova. Limits of sequences of Darboux-like mappings, Mat. Stud. 40 (2013), 132–136.

We call a mapping $f: X \to Y$ an *l*-Darboux mapping if the image of any arcwise connected subset of X is connected. We prove that the class of *l*-Darboux F_{σ} -measurable mappings of a topological space to a metric space is closed with respect to uniform limits.

Е. Карлова. Пределы последовательностей отображений типа Дарбу // Мат. Студії. – 2013. – Т.40, №2. – С.132–136.

Отображение $f: X \to Y$ мы называем l-Дарбу отображением, если образ любого дугообразно связного подмножества пространства X связный. Доказано, что класс l-Дарбу F_{σ} -измеримых отображений между топологическим и метрическим пространствами замкнут относительно равномерных пределов.

1. Introduction. A mapping f between topological spaces X and Y has the Darboux property if the image of any connected subset of X is connected. A mapping f is a connectivity mapping if the graph of the restriction $f|_C$ is connected for every connected subset C of X. Notice that each connectivity mapping has the Darboux property. We say that f is (weakly) Gibson ([4]) if $f(\overline{U}) \subseteq \overline{f(U)}$ for any open (connected) subset U of X. According to [3] each Darboux mapping is weakly Gibson.

It is well known that the class of all Darboux Baire-one mappings $f : \mathbb{R} \to \mathbb{R}$ is closed with respect to uniform limits ([1, Theorem 3.4]). It is naturally to ask whether the same is true for mappings defined on \mathbb{R}^n , n > 1. Observe that according to [2, Corollary 9.16] a uniform limit of connectivity mappings $f_m : \mathbb{R}^n \to \mathbb{R}$, n > 1, is a connectivity mapping.

In the paper we consider *l*-Darboux mappings or Darboux mappings in the sense of Pawlak (see definitions in Section 3, [7]) and prove that the class of all *l*-Darboux F_{σ} -measurable mappings $f: X \to Y$, where X is a topological space and Y is a metric space, is closed with respect to uniform limits. To do this we firstly prove the auxiliary fact that each weakly Gibson F_{σ} -measurable mapping $f: X \to Y$ is a connectivity mapping if X is a connected subset of the real line and Y is an arbitrary space (see Section 2).

It was proved in [6] that any function $f \colon \mathbb{R} \to \mathbb{R}$ is a pointwise limit of Darboux mappings. In Section 4 we show that any mapping between an ω -resolvable space X and a separable space Y is a pointwise limit of Gibson mappings.

2. Connectivity functions and \mathcal{G} -closed sets. For a topological space X we denote by $\mathcal{T}(X)$ the topology of X, by $\mathcal{C}(X)$ we denote the collection of all connected subsets of X and by $\mathcal{G}(X)$ we denote the family of all open connected subsets of X.

²⁰¹⁰ Mathematics Subject Classification: 26A21, 26B05, 54C08.

Keywords: uniform limit; Darboux function; F_{σ} -measurable function; weakly Gibson function.

A mapping $f: X \to Y$ is

- a *Baire-one mapping*, $f \in B_1(X, Y)$, if there exists a sequence of continuous mappings $f_n: X \to Y$ which is pointwise convergent to f on X;
- F_{σ} -measurable if $f^{-1}(V)$ is an F_{σ} -subset of X for any open set $V \subseteq Y$;
- (weakly) Gibson if for an arbitrary $U \in \mathcal{T}(X)$ ($U \in \mathcal{G}(X)$) we have $f(\overline{U}) \subseteq \overline{f(U)}$;
- Darboux, $f \in D(X, Y)$, if for any $C \in \mathcal{C}(X)$ the set f(C) is connected;
- a connectivity mapping if the graph of $f|_C$ is connected for every connected subset C of X.

A subset A of X is called *ambiguous* if it is both F_{σ} and G_{δ} in X.

If $f: X \to Y$ is a mapping we define $\gamma_f: X \to X \times Y$ by $\gamma_f(x) = (x, f(x))$ for all $x \in X$. If a space X is homeomorphic to a space Y we write $X \simeq Y$.

Let \mathcal{A} be a system of subsets of X. A set $E \subseteq X$ is called *closed with respect to* \mathcal{A} or, briefly, \mathcal{A} -closed, if the inclusion $A \subseteq E$ implies $\overline{A} \subseteq E$ for any $A \in \mathcal{A}$.

Here and throughout the paper we consider \mathcal{G} -closed subsets of X, i.e. such sets which are closed with respect to the system of all open connected subsets of X.

Let $E \subseteq X$. Clearly, if E is closed or $\operatorname{int} E = \emptyset$ then E is \mathcal{G} -closed in X. Remark that the converse is not true. Indeed, let $E = \bigcup_{n=1}^{\infty} \left[\frac{1}{2n}, \frac{1}{2n-1}\right]$. Then E is a \mathcal{G} -closed subset of \mathbb{R} with non-empty interior which is not closed.

Theorem 1. Let X be a connected and locally connected hereditarily Baire space, X_1 be a \mathcal{G} -closed ambiguous subset of X such that its complement X_2 is also \mathcal{G} -closed. Then either $X_1 = X$ or $X_2 = X$.

Proof. Suppose on the contrary that $X_1 \neq X$ and $X_2 \neq X$. Set $F = \overline{X}_1 \cap \overline{X}_2$. Then $F \neq \emptyset$, because X is connected. We show that $X_1 \cap F$ is a dense set in F. To obtain a contradiction, assume that there exists $x_0 \in F$ and an open connected neighborhood U of x_0 in X such that $U \cap F \subseteq X_2$. Then $x_0 \in \overline{X}_1 \cap X_2$, consequently, $U \cap X_1 \neq \emptyset$. Take an arbitrary $a \in U \cap X_1$. It is easy to check that $a \notin \overline{X}_2$. Let G be a component of $X \setminus \overline{X}_2$ such that $a \in G$. Then G is open in X, since X is locally connected. Notice that $U \cap G \neq \emptyset \neq U \setminus G$. According to [5, p. 136], $U \cap \operatorname{fr} G \neq \emptyset$. Since G is closed in $X \setminus \overline{X}_2$, $\operatorname{fr} G \subseteq \overline{X}_2$. Moreover, $G \subseteq X_1$. Hence, $\operatorname{fr} G \subseteq F$. Take any $b \in U \cap \operatorname{fr} G$. Then $b \in X_2$. Since X_1 is \mathcal{G} -closed, $b \in \overline{G} \subseteq X_1$, a contradiction. Therefore, the set $X_1 \cap F$ is dense in F. In the same manner we can see that the set $X_2 \cap F$ is also dense in F. Then $X_1 \cap F$ and $X_2 \cap F$ are disjoint dense G_δ -subsets of F, which is impossible, because F is a Baire space. Hence, our assumption is false. Therefore, $X_1 = X$ or $X_2 = X$.

Corollary 1. Let X be a connected subset of \mathbb{R} and Y be a topological space. Then every weakly Gibson F_{σ} -measurable mapping $f: X \to Y$ is a connectivity mapping.

Proof. Remark that it is sufficient to show that the graph of f is connected. Assume it is not true. Then $\gamma_f(X) = W_1 \cup W_2$, where $W_1 \cap W_2 = \emptyset$ and W_i is a non-empty clopen set in $\gamma_f(X)$ for every $i \in \{1, 2\}$. Let $X_i = \gamma_f^{-1}(W_i)$ for $i \in \{1, 2\}$. Then $X = X_1 \cup X_2$ and $X_1 \cap X_2 = \emptyset$.

We prove that the set X_i is \mathcal{G} -closed in X for $i \in \{1, 2\}$. Consider an open connected subset U of X such that $U \subseteq X_1$. Then $\gamma_f(\overline{U}) \subseteq \overline{\gamma_f(U)}$. Indeed, let $x_0 \in U$ and W be a neighborhood of $\gamma_f(x_0)$ in $X \times Y$. Choose an open connected neighborhood U_0 of x_0 in X and a neighborhood V of $f(x_0)$ in Y such that $U_0 \times V \subseteq W$. Taking into account that $U_0 \cap U$ is an open connected subset of X, $x_0 \in \overline{U_0 \cap U}$ and f is weakly Gibson, we obtain that there exists $x' \in U_0 \cap U$ such that $f(x') \in V$. Then $\gamma_f(x') \in U_0 \times V \subseteq W$. Hence,

$$\gamma_f(\overline{U}) \subseteq \overline{\gamma_f(U)} \subseteq \overline{W_1} \cap \gamma_f(X) = W_1.$$

Therefor, $\overline{U} \subseteq X_1$. Analogously we can prove that X_2 is \mathcal{G} -closed in X.

Observe that the mapping γ_f is F_{σ} -measurable. Indeed, let G be an open subset of $X \times Y$ and $\{B_k : k \in \mathbb{N}\}$ be a base of open sets in X. Put $V_k = \bigcup \{V : V \text{ is open in } Y \text{ and } B_k \times V \subseteq G\}$. Then $W = \bigcup_{k=1}^{\infty} B_k \times V_k$. Since $\gamma_f^{-1}(G) = \bigcup_{k=1}^{\infty} (B_k \cap f^{-1}(V_k))$, the set $\gamma_f^{-1}(G)$ is F_{σ} in X.

Since W_i is a clopen set, X_i is an ambiguous subset of X for $i \in \{1, 2\}$. By Theorem 1 we have that either $X_1 = X$ or $X_2 = X$. Then either $W_1 = \emptyset$ or $W_2 = \emptyset$, which implies a contradiction.

3. Uniform limit of *l*-Darboux functions. We call a mapping $f: X \to Y$ an *l*-Darboux mapping if f(C) is connected for any arcwise connected set $C \subseteq X$. The collection of all *l*-Darboux mappings between X and Y we denote by $D^l(X,Y)$. Evidently, each Darboux mapping is *l*-Darboux. It is not hard to verify that $D(\mathbb{R},Y) = D^l(\mathbb{R},Y)$. But if the domain space is more complicated the inclusion $D^l(X,Y) \subset D(X,Y)$ might to be strict (see Example 1).

Proposition 1. Let X and Y be topological spaces. Then $f \in D^{l}(X, Y)$ if and only if for any set $K \subseteq X$ with $K \simeq [0, 1]$ the set f(K) is connected.

Proof. Clearly, we only need to prove the sufficiency. Let A be an arcwise connected subset of X. Fix an arbitrary $a \in A$. For all $x \in A$ we consider a homeomorphic embedding $\varphi_x : [0,1] \to A$ such that $\varphi_x(0) = a$ and $\varphi_x(1) = x$. Write $K_x = \varphi_x([0,1])$. Then $f(A) = \bigcup_{x \in A} f(K_x)$. Since $K_x \simeq [0,1]$, the set $f(K_x)$ is connected. Therefore, f(A) is connected, provided $f(a) \in \bigcap_{x \in A} f(K_x)$.

Example 1. For all $(x, y) \in \mathbb{R}^2$ define

$$f(x,y) = \begin{cases} \sin\frac{1}{x}, & x > 0, \\ 1, & x \le 0. \end{cases}$$

Then the mapping γ_f is *l*-Darboux and is not Darboux.

Proof. Let $K \subseteq \mathbb{R}^2$ be such a set that $K \simeq [0,1]$. It is easy to check that $f \in D(\mathbb{R}^2, \mathbb{R})$. Then $g = f|_K \in D(K, \mathbb{R})$. By Corollary 1, g is a connectivity function. In particular, g has a connected graph. Since $\gamma_f(K)$ is equal to the graph of g, $\gamma_f(K)$ is connected. Therefore, γ_f is *l*-Darboux by Proposition 1.

Consider the set $C = \{(x, y) \in \mathbb{R}^2 : y = \sin \frac{1}{x}, x > 0\} \cup \{0, 0\}$. It is not hard to verify that the set $\gamma_f(C)$ is disconnected. Hence, γ_f does not satisfy the Darboux property. \Box

Let (X, d) be a metric space, $x_0 \in X$ and $\varepsilon > 0$. By $B(x_0, \varepsilon)$ we denote the set $\{x \in X : d(x, x_0) < \varepsilon\}$.

Theorem 2. Let X be a topological space, (Y, d) be a metric space, $(f_n)_{n=1}^{\infty}$ be a uniformly convergent sequence of (weakly) Gibson mappings $f_n: X \to Y$ and let $f = \lim_{n \to \infty} f_n$. Then f is (weakly) Gibson.

Proof. Take an arbitrary open (connected) set $U \subseteq X$, a point $x_0 \in \overline{U}$ and $\varepsilon > 0$. Choose a number N so that $d(f_N(x), f(x)) < \varepsilon/2$ for all $x \in X$. In particular, $f_N(x_0) \in B(f(x_0), \varepsilon/2)$. Since f_N is (weakly) Gibson, there exists $x_1 \in U$ such that

$$f_N(x_1) \in B(f(x_0), \varepsilon/2).$$

Then

$$d(f(x_1), f(x_0)) \le d(f(x_1), f_N(x_1)) + d(f_N(x_1), f(x_0)) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence, $f(x_1) \in B(f(x_0), \varepsilon)$. Therefore, $f(x_0) \in \overline{f(U)}$.

Theorem 3. Let X be a topological space, (Y, d) be a metric space and $(f_n)_{n=1}^{\infty}$ be a uniformly convergent sequence of F_{σ} -measurable mappings $f_n \in D^l(X, Y)$. Then $f = \lim_{n \to \infty} f_n$ is an F_{σ} -measurable *l*-Darboux mapping.

Proof. Assume that $f \notin D^l(X, Y)$ and choose a subset $K \simeq [0, 1]$ of X so that $f(K) = W_1 \cup W_2$, where W_1 and W_2 are disjoint non-empty clopen subsets of Z = f(K). Let $K_i = f^{-1}(W_i)$ for $i \in \{1, 2\}$. Set $g = f|_K$ and $g_n = f_n|_K$ for all $n \in \mathbb{N}$.

Show that $g_n \colon K \to Z$ is weakly Gibson for every n. Let $U \subseteq K$ be an open connected set, $x_0 \in \overline{U}$ and let V be an open neighborhood of $f(x_0)$ in Y. Suppose that $f(U) \cap V = \emptyset$. Denote $C = U \cup \{x_0\}$. Then

$$f(C) = f(U) \cup \{f(x_0)\} \subseteq (Y \setminus V) \cup \{f(x_0)\},\$$

which contradicts the connectedness of C.

According to Theorem 2 the mapping $g: K \to Z$ is weakly Gibson. Then K_1 and K_2 are \mathcal{G} -closed subsets of K. Moreover, g is F_{σ} -measurable as a uniform limit of F_{σ} -measurable mappings ([5, p. 395]). Therefore, K_1 and K_2 are ambiguous subsets of K. Hence, $K_1 = K$ or $K_2 = K$ by Theorem 1. Consequently, $W_1 = \emptyset$ or $W_2 = \emptyset$, a contradiction. \Box

4. Pointwise limit of Gibson functions. Recall that a topological space X is ω -resolvable if there exists a sequence $(X_n)_{n=1}^{\infty}$ of dense subspaces of X such that $X_n \cap X_m = \emptyset$ for $n \neq m$ and $X = \bigcup_{n=1}^{\infty} X_n$.

Theorem 4. Let X be an ω -resolvable space and Y be a separable space. Then any mapping $f: X \to Y$ is a pointwise limit of sequence of Gibson mappings.

Proof. Let $(X_n)_{n=1}^{\infty}$ be a sequence of dense subspaces of X such that $X_n \cap X_m = \emptyset$ for $n \neq m$ and $X = \bigcup_{n=1}^{\infty} X_n$, and let $D = \{y_n : n \in \mathbb{N}\}$ be a dense subspace of Y. For all $n \in \mathbb{N}$ and $x \in X$ define

$$f_n(x) = \begin{cases} f(x), & \text{if } x \in X_1 \cup \dots \cup X_n, \\ y_k, & \text{if } x \in X_{n+k} \text{ for some } k. \end{cases}$$

Fix $n \in \mathbb{N}$ and show that $f_n: X \to Y$ is Gibson. Indeed, take an open set $U \subseteq X$, a point $x_0 \in \overline{U}$ and a neighborhood V of $f_n(x_0)$. Choose a number N so that $y_N \in V$. Since X_{N+n} is dense in X, there is a point $x \in U \cap X_{N+n}$. Then $y_N = f_n(x)$. Hence, $f_n(\overline{U}) \subseteq \overline{f_n(U)}$.

It can be easily seen that $\lim_{n \to \infty} f_n(x) = f(x)$ for each $x \in X$.

Remark 1. Let us consider the function $f \colon \mathbb{R} \to \{0, 1\}, f = \chi_{\{0\}}$. According to the previous theorem f is a pointwise limit of a sequence of Gibson functions. But f is not a pointwise limit of Darboux functions, because every Darboux function $h \colon \mathbb{R} \to \{0, 1\}$ is constant.

REFERENCES

- 1. A. Bruckner, Differentiation of real functions, 2nd ed., Providence, RI: American Mathematical Society, 1994, 195 p.
- 2. R. Gibson, T. Natkaniec, Darboux-like functions, Real Anal. Exchange, 22 (1996-97), №2, 492–533.
- 3. O. Karlova, V. Mykhaylyuk, On Gibson functions with connected graphs, Math. Slovaca, 63 (2013), Nº3.
- 4. K. Kellum, Functions that separate $X \times \mathbb{R}$, Houston J. Math., **36** (2010), 1221–1226.
- 5. K. Kuratowski, Topology, V.1, M.: Mir, 1966. (in Russian)
- A. Lindenbaum, Sur quelques propriétiés des fonctions de variable réelle, Ann. Soc. Math. Polon., 6 (1927), 129–130.
- 7. H. Pawlak, R.J. Pawlak, On weakly Darboux functions and some problem connected with the Morrey monotonicity, Journal of Applied Analysis, 1 (1995), №2, 135–144.

Yuriy Fedkovych Chernivtsi National University Maslenizza.ua@gmail.com

> Received 9.04.2013 Revised 16.07.2013