Finite near-fields with hereditary non-abelian groups

Author
I.Yu.Rayevska, M.Yu.Rayevska
Abstract
A multiplicative group is said to be hereditary non-abelian if either it is abelian or every its non--abelian subgroup is isomorphic to the multiplicative group of some near-field. A complete classification of hereditary non-abelian groups of finite near-fields is obtained.
Keywords
hereditary non-abelian group, near-field, isomorphism
DOI
doi:10.30970/ms.34.1.38-43
Reference
1. L.E. Dixon, Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc. 6 (1905), 198--204.

2. S. Ligh, Finite Hereditary Near-field groups, Mh. Math. 86 (1978), 7-11.

3. G.A. Miller, H. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), 398-404.

4. H. Wahling, Theorie der Fastkörper, Essen: Thales Verlag, 1987.

5. H. Zassenhaus, Über endliche Fastkörper, Ab. Math. Sem. Univ. Hamburg, 11 (1935/36), 187-220.

6. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys., 3 (1892), 265–284.

7. М. Холл, Теория групп, М.: Издательство иностранной литературы, 1962, 468 с.

Pages
38-43
Volume
34
Issue
1
Year
2010
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue