Stochastic optimization procedure convergence with Markov switching in the averaging scheme

Author
U.T.Himka, Ya.M.Chabanyuk
Lviv Polytechnic National University
Abstract
We established sufficient conditions for the convergence of the multi-dimensional continuous stochastic optimization procedure in the case of direct dependence of the regression function on the environment, which described by Markov switching. Additional conditions on Lyapunov function of the averaged pure gradient system have been aquired in the assumption of exponential stability for the averaged evolutionary system according to the Markov process stationary distribution.
Keywords
stochastic optimization, Markov process, Lyapunov function, stochastic optimization
DOI
doi:10.30970/ms.34.1.101-105
Reference
1. Kiefer~E., Wolfowitz~J. Stochastic estimation of the maximum of regression function// Ann. Math. Statist. -- 1952. -- V.23, №3. -- P. 462--466.

2. Nevelson~M.S., Khasminsky~R.Z. Stochastic Approximation and Recurrence Evaluation. - Nauka, Moscow, 1972. -- 332 p.

3. Чабанюк Я.М. Процедура стохастичної апроксимації в ергодичному середовищі Маркова// Мaт. Студ. -- 2004. -- Т.21, №1. -- С. 81--86.

4. Korolyuk~V.S., Limnios~N. Stochastic Systems in Merging Phase Space. -- World Scientific, Singapore, 2005. -- 330 p.

Pages
101-105
Volume
34
Issue
1
Year
2010
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue