Stochastic optimization procedure convergence with Markov switching in the averaging scheme |
|
| Author |
ulyana.himka@gmail.com
Lviv Polytechnic National University
|
| Abstract |
We established sufficient conditions for the convergence of the multi-dimensional continuous stochastic optimization procedure in the case of direct dependence of the regression function on the environment, which described by Markov switching. Additional conditions on Lyapunov function of the averaged pure gradient system have been aquired in the assumption of exponential stability for the averaged evolutionary system according to the Markov process stationary distribution.
|
| Keywords |
stochastic optimization, Markov process, Lyapunov function, stochastic optimization
|
| DOI |
doi:10.30970/ms.34.1.101-105
|
Reference |
1. Kiefer~E., Wolfowitz~J. Stochastic estimation of the maximum of regression function// Ann. Math. Statist. -- 1952. -- V.23, №3. -- P. 462--466.
2. Nevelson~M.S., Khasminsky~R.Z. Stochastic Approximation and Recurrence Evaluation. - Nauka, Moscow, 1972. -- 332 p. 3. Чабанюк Я.М. Процедура стохастичної апроксимації в ергодичному середовищі Маркова// Мaт. Студ. -- 2004. -- Т.21, №1. -- С. 81--86. 4. Korolyuk~V.S., Limnios~N. Stochastic Systems in Merging Phase Space. -- World Scientific, Singapore, 2005. -- 330 p. |
| Pages |
101-105
|
| Volume |
34
|
| Issue |
1
|
| Year |
2010
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |