Kernel of generalized Weitzenböck's derivation of polynomial ring (in Ukrainian) |
|
| Author |
bedratyuk@ief.tup.km.ua, leonid.uk@gmail.com
Khmelnytskyi National University
|
| Abstract |
Let $k[X]{\colon{}=}k[x_1,\ldots ,x_n]$ be a polynomial ring over a field $k$ of characteristic zero. For a generalized Weitzenböck derivation $D$ of the ring $k[X],$ a description of the constant rings $k[X]^{\,D}$ and $k(X)^{\,D}$ is given.
|
| Keywords |
polynomial ring, generalized Weitzenböck derivation, constant ring
|
| DOI |
doi:10.30970/ms.29.2.115-120
|
Reference |
1. Nowicki A. Polynomial derivation and their Ring of Constants, UMK, Torun,1994.
2. van den Essen A. Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics, 190, Basel, 2000. 3. Freudenburg G. A survey of counterexamples to Hilbert's fourteenth problem// Serdica Math. J. --- 2001. --- P.171--192. 4. Bedratyuk L. On complete system of invariants for the binary form of degree 7// J. Symb. Comput. --- 2007. --- V.42. --- P.935-947. 5. Бедратюк Л.П. Елементи Казиміра диференціювань кільця многочленів// Математичні студії. --- 2007. --- Т.27, № 2. --- С.115--119. 6. Daigle D., Freudenburg G. A conterexample to Hilbert's fourtheenth problem in dimension five// J. of Algebra. --- 1999. --- V.221. --- V.528--535. 7. Weitzenböck R. Über die Invarianten von linearen Gruppen// Acta Math. --- 1932. --- Bd.58. --- S.231--293. 8. Roberts M. The covariants of a binary quantic of the n-th degree// Quarterly J. Math. --- 1861. --- V.4. --- P.168--178. 9. Hilbert D. Theory of algebraic invariants. --- Cambridge University Press, 1993. 10. Gordan P. Invariantentheorie. --- Teubner, Leipzig, 1885-87; reprinted by Chelsea Publ. Co., 1987. 11. von Gall F. Das vollständige Formensystem der binären Form achter Ordnung// Math. Annalen. --- 1880. --- Bd.17. --- S.31--51; S.139--152. 12. Cerezo A. Tables des invariants algébriques et rationnels d'une matrice nilpotente de petite dimension/ Prépublications Mathématiques, Université de Nice, 146, 1987. 13. Tan L. An algorithm for explicit generators of the invariants of the basis $G_a$-action// Comm. in Algebra. --- 1989. --- V.17. --- P.565--572. 14. van den Essen A. An algorithm to compute the invariant ring of a $G_a$-action on an affine variety// J. Symbolic Computation. --- 1993. --- V.16. --- P.551--555. 15. Glenn O. Treatise on theory of invariants. --- Boston, 1915. 16. Newstead P. Invariants of pencils of binary cubics// Math. Proc. Cambridge Phil. Soc. --- 1981. --- V.89. --- P.201--209. |
| Pages |
115-120
|
| Volume |
29
|
| Issue |
2
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |