Functors of finite degree and asymptotic dimension zero

Author
O.Shukel'
Faculty of Mechanics and Mathematics,Ivan Franko National University of L'viv
Abstract
For any finitary normal functor $F$ in the category of compact Hausdorff spaces one can define its counterpart on the category of proper metric spaces and coarse maps. The aim of this note is to show that the obtained functor preserves the class of proper metric spaces of asymptotic dimension zero in the sense of Gromov.
Keywords
functor, finite degree, asymptotic dimension zero
DOI
doi:10.30970/ms.29.1.101-107
Reference
1. E.V. Shchepin. Functors and uncountable powers of compacta // Uspekhi Mat. Nauk. -- 1981.-- V. 36, № 3. -- P.3--62.

2. Frider V. Normal functors in coarse category // Algebra and Discrete Mathematics. -- 2005. -- № 4. -- P.16--27.

3. Gromov M. Asymptotic invariants for infinite groups// LMS Lecture Notes. -- 1993. -- V. 182, № 2. -- P. 1--295.

4. Шукель О. Гiперсиметричнi степенi i асимптотично нульвимiрнi простори// Вiсник Львiвського унiверситету, сер. мех.-мат. -- 2006. -- Вип. 66. -- С.214--224.

5. Dranishnikov A. Asymptotic topology// Russian Math. Surveys. -- 2000. -- V. 55, № 6. -- P.71--116.

6. M. M. Zarichnyi. On covariant topological functors, I. // Q $\&$ A in General Topology. -- 1991. -- V. 8. -- P.1--32.

7. Brodskiy N., Dydak J., Higes J., Mitra A. Dimention zero at all scales// Topology Appl. -- 2007. -- V.154, № 14. -- P.2729 -- 2740.

8. Basmanov V. N. Covariant functors, retracts, and dimension // Dokl. Akad. Nauk SSSR. -- 1983. -- V.271, № 5. -- P.1033--1036 (Russian).

9. Basmanov V. N. Dimension and some functors with finite support // Vestnik Moskov. Univ. Ser. I Mat. Mekh. -- 1981. -- № 6. -- P.48--50 (Russian).

Pages
101-107
Volume
29
Issue
1
Year
2008
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue