Growth of analytic functions in the unit disc and complete measure in the sense of Grishin |
|
| Author |
ichyzh@lviv.farlep.net
Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv,
|
| Abstract |
Let $\rho_T[f] $ and $\rho_M[f]$ be the orders of an analytic function $f$ in the unit disc defined by the Nevanlinna characteristic and the maximum modulus function, respectively. Given $0\le \sigma \le \rho\le\sigma +1$, $\rho\ge 1$, we describe the class $A_\sigma^\rho$ of analytic function in $\mathbb{D}$ such that $\rho_T[f]=\sigma$, $\rho_M[f]=\rho$ in terms of the so called complete measure (in the sense of Grishin) of an analytic function. The proofs are based on results of C.N.Linden and recent results of the author.
|
| Keywords |
growth, analytic function, unit disc, complete measure
|
| DOI |
doi:10.30970/ms.29.1.35-44
|
Reference |
1. Нафталефич А.Г. Об интерполировании функций, мероморфных в единичном круге, Докл. АН СССР. LXXXVIII (1953), № 2, 205--208.
2. Tsuji M. Canonical product for a meromorphic function in a unit circle, J.Math.Soc.Japan 8 (1956), №1, 7--21. 3. Linden C.N. The representation of regular functions, J. London Math. Soc. 39 (1964), 19--30. 4. Linden C.N. On a conjecture of Valiron concerning sets of indirect Borel point, J.~London Math.Soc. 41 (1966), 304--312. 5. Linden C.N. The minimum modulus of functions regular and of finite order in the unit circle, Quart.J.Math.(2) 7 (1956), 196--216. 6. Linden C.N. Integral logarithmic means for regular functions, Pacific J. of Math. 138 (1989), №1, 119--127. 7. Linden C.N. The characterization of orders for regular functions, Math. Proc. Cambrodge Phil. Soc. 111 (1992), №2, 299--307. 8. Чижиков I.E. Про повний опис класу аналітичних в крузі функцій без нулів із заданими величинами порядків, Укр. мат. журн. 59 (2007), №7, 979--995. 9. Джрбашян М.М. Интегральные преобразования и представления функций в комплексной области, М.: Наука, 1966. 10. Zygmund A. Trigonometric series, V.1,2 Cambridge Univ. Press, 1959. 11. Hardy G.H., Littlewood J.E. Some properties of fractional integrals. II, Math. Zeitschrift 34 (1931/32), 403--439. 12. Привалов И.И. Граничные свойства однозначных аналитических функций, М. МГУ. -- 1941. 13. Шамоян Ф.А. Несколько замечаний к параметрическому представлению классов Неванлинны-Джрбашяна, Мат. заметки 52 (1992), №1, 128--140. 14. Chyzhykov I. Growth and representation of analytic and harmonic functions in the unit disk, Ukr.Math.Bull. 3 (2006), №1, 31--44. 15. Гришин А. Непрерывность и асимптотическая непрерывность субгармонических функций, Мат. физика, анализ, геометрия 1 (1994), №2, 193--215. 16. Fedorov M.A., Grishin A.F. Some questions of the Nevanlinna theory for the complex half-plane, Math. Physics, Analysis and Geometry (Kluwer Acad. Publish.) 1 (1998), №3, 223--271. 17. Chyzhykov I. On the argument of bounded analytic functions, preprint. 18. Collingwood E.F., Lohwater A.J. The theory of claster sets, Cambridge Univer. Press, 1966. 19. Salem R. On a theorem of Zygmund, Duke Math.J. 10 (1943), 23--31. |
| Pages |
35-44
|
| Volume |
29
|
| Issue |
1
|
| Year |
2008
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |