Hölder continuity of weak solutions to nondiagonal degenerate parabolic system of three equations

Author
D.Portnyagin
Institute for Condensed Matter Physics of the National Academy of,Sciences of Ukraine
Abstract
Hölder continuity of weak solutions is studied for a nondiagonal parabolic system of degenerate quasilinear differential equations with matrix of coefficients satisfying special structure conditions. A technique based on estimating the linear combinations of unknowns is employed to this end.
Keywords
weak solution, Hölder continuity, degenerate parabolic system
DOI
doi:10.30970/ms.26.2.174-201
Reference
1. Amann H. Dymnamic theory of quasilinear parabolic equations, I Abstract evolution equations, Nonlinear Anal. 12 (1988), 895--919.

2. Amann H. Dymnamic theory of quasilinear parabolic systems, III Global existence, Math. Z. 202 (1989), 219--250.

3. Amann H. Dymnamic theory of quasilinear parabolic equations, II Reaction-diffusion systems, Differ. Integral Equations. 3 (1990), 13--75.

4. Bitsadze A. V. On elliptic systems of differential equations with partial derivatives of second order, Dokl. AN SSSR 112 (1957) no. 6, 983--986.

5. Bitsadze A. V. Boundary Value Problems for Second Order Elliptic Equations, Moskva, Nauka 1966.

6. Bitsadze A. V. Some Classes of Partial Differential Equations, Moskva, Nauka 1981.

7. Y. Z. Chen and L. C. Wu Second Order Elliptic Equations and Elliptic Systems Amer. Math. Soc. Providence, RI (1998).

8. DiBenedetto E. Degenerate Parabolic Equations, Springer, New York (1993).

9. Dung L. Hölder regularity for certain strongly coupled parabolic systems, J. Differential Equations 151 (1999), 313--344.

10. De Giorgi E. Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (1968), 135--137.

11. Küfner K. H. W. Global existence for a certain strongly coupled quasilinear parabolic systems in population dynamics, Analysis 15 (1995), 343--357.

12. Ladyzhenskaya O. A., Solonnikov N. A., Ural'tseva N. N. Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc. Providence, RI (1968).

13. Portnyagin D. A generalization of the maximum principle to nonlinear parabolic systems, Annales Pol. Math. 81.3 (2003), 217--236.

14. Pozio M. A., Tesei A. Global existence of solutions for a strongly coupled quasilinear parabolic system, Nonlinear Anal. 12 (1990) No. 8, 657--689.

15. Wiegner M. Global solutions to a class of strongly coupled parabolic systems, Math. Ann. 292 (1992), 711--727.

Pages
174-201
Volume
26
Issue
2
Year
2006
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue