On zeros of derivatives of an entire function |
|
| Author |
tftj@franko.lviv.ua
Lviv Ivan Franko National University
|
| Abstract |
For a finite system $S(f)=\{f^{(n_1)}, f^{(n_2)},\dots, f^{(n_k)}\}$ of derivatives of an entire\break transcedental function $f$ let $d_{S(f)}(z)$ be the radius of the largest disk with the center at $z$ in which any derivative of $S(f)$ does not vanish. Conditions under which $\sup\{d_{S(f)}(z):\,z\in {\Bbb C}\}=+\infty$ are investigated.
|
| Keywords |
zero, entire function, derivative
|
| DOI |
doi:10.30970/ms.25.2.141-148
|
Reference |
1. Sreenivasulu V. The depth of an entire function // Journal of the Indian Math. Soc. -- 1992. -- V. 58, No. 2. -- P. 105--116.
2. Frank G. Uber den Index einer ganzen Funktionen // Arch. der Math. -- 1971. -- Bd. 175--180. 3. Lepson B. Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index // Proc. Sympos. Pure Math. V.2. Amer. Math. Soc., Providence, Phode Island. - 1968. -- P. 298--307. 4. Shah S.M. Entire functions of bounded index // Lect. Notes in Math. -- 1977. -- V. 589. -- P. 117--145. 5. Korenkov M.…. On value distribution of sigma-function of Weierstrass // In the book: Matemat. sbornik. -- K.: Naukova dumka. -- 1976. -- P. 240--242. 6. Kuratowski K. Topology. V.II // M.: Mir. -- 1969. -- 624 p. |
| Pages |
141-148
|
| Volume |
25
|
| Issue |
2
|
| Year |
2006
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |