The direct limit of metrizable ANR's is an ANR for stratifiable spaces

Author
T.O.Banakh
Ivan Franko National University of Lviv
Abstract
It is proven that the direct limit $\varinjlim X_n$ of a sequence $X_1\subset X_2\subset\dots$ metrizable A(N)R's is an A(N)R for stratifiable spaces.
Keywords
direct limit, stratifiable space, metrizable ANR
DOI
doi:10.30970/ms.23.1.92-98
Reference
1. Banakh T. On topological groups containing a Fréchet-Urysohn fan, Matem. Studii, 9 (1998) no.2, 149–154.

2. Banakh T. Topological classification of strong nuclear (LF)-spaces, Studia Math., 138 (2000), 201–208.

3. Banakh T., Zdomsky L. The topological structure of (homogeneous) spaces and groups with countable cs*-character, Appl. Gen. Top. (to appear)

4. Базилевич Л., Зарічний М. Вступ до теорії нескінченновимірних многовидів, ІЗМН. Київ, 1996, 40 с.

5. Bessaga C., Pe czyński A. Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.

6. Borges C.J.R. On stratifiable spaces, Pacific J. Math., 17 (1966), 1–16.

7. Cauty R. Convexité topologique et prolongement des fonctions continues, Compositio Math., 27 (1973), 233–271.

8. Cauty R. Sur les rétractes absolus Pₙ-valués de dimension finie, preprint.

9. Ceder J.G. Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105–126.

10. Dobrowolski T., Toruńczyk H. Separable complete ANR's admitting a group structure are Hilbert manifolds, Top. Appl. 12 (1981), 229–235.

11. Dugundji J. An extension of Tietze's theorem, Pacific J. Math., 1 (1951), 353–367.

12. Engelking R. General topology, PWN, Warsaw, 1977.

13. Gruenhage G. Generalized metric spaces, Handbook of Set-Theoretic Topology (K.Kunen and J.Vaughan, eds.) Elsevier, Amsterdam, 1984, 423–501 p.

14. Hausdorff F. Erweiterung einer stetigen Abbildung, Fund. Math., 30 (1938), 40–47.

15. Hu S.-T. Theory of Retracts, Detroit, Wayne State Univ. Press, 1965.

16. Kodama Y. Note on an absolute neighborhood extensor for metric spaces, J. Math. Soc. of Japan, 8, no.3, 206–215.

17. Pentsak E. On manifolds modeled on direct limits of 𝒞-universal ANR's, Matematychni Studii (1995), no.5, 107–116.

18. Sakai K. On ℝ^∞-manifolds and Q^∞-manifolds, Topology Appl., 18 (1984), 69–79.

Pages
92-98
Volume
23
Issue
1
Year
2005
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue