Inverse problem for a system of heat and moisture transfer equations to determine coefficients in the third-order boundary condition (in Ukrainian) |
|
| Author |
Ivan Franko Lviv State University
|
| Abstract |
There is considered the problem to define the functions $u_i(x,t)$, $u_2(x,t)$, $\alpha_i(t)$ і $\beta_i(t)$ from the conditions
$$ \frac{1}{a_1^2} \frac{\partial u_1}{\partial t} = \frac{\partial^2 u_1}{\partial x^2} - b_1^2 \frac{\partial^2 u_2}{\partial x^2}, \quad 0 < x < h, \quad t > -\infty, \quad (1) $$
$$ \frac{1}{a_2^2} \frac{\partial u_2}{\partial t} = \frac{\partial^2 u_2}{\partial x^2} - b_2^2 \frac{\partial^2 u_1}{\partial x^2}, \quad 0 < x < h, \quad t > -\infty, $$
$$ \left.\left( \frac{\partial u_1}{\partial x} + \alpha_1(t)u_1 + \alpha_2(t)u_2 \right)\right|_{x=0} = \mu_1(t), \quad t > -\infty, \quad (2) $$
$$ \left.\left( \frac{\partial u_2}{\partial x} + \beta_1(t)u_1 + \beta_2(t)u_2 \right)\right|_{x=0} = \mu_2(t), \quad t > -\infty, $$
$$ u_1|_{x=h} = \nu_1(t), \quad u_2|_{x=h} = \nu_2(t), \quad t > -\infty, \quad (3) $$
$$ \frac{\partial u_1}{\partial x}\bigg|_{x=h} = \gamma_1(t), \quad \frac{\partial u_2}{\partial x}\bigg|_{x=h} = \gamma_2(t), \quad t > -\infty. $$
The constant coefficients $a_i^2$, $b_i^2$, and also the functions $\beta_1(t)$, $\alpha_2(t)$, $\nu_i(t)$, $\mu_i(t)$ ($i=1,2$) are given.
First, we find the solution to the Cauchy problem for the system of equations with the specified initial conditions using the symbolic method [1] for this purpose.
|
| Keywords |
heat transfer equation, inverse problem, third order boundary condition
|
| DOI |
doi:10.30970/ms.1.89-97
|
Reference |
1. Леви П. Кокретные проблемы функционального анализа.
М.:Наука, 1967, С.
|
| Pages |
89-97
|
| Volume |
1
|
| Year |
1991
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |