On a criterion of belonging of entire function of exponential type to to the class $L^p$ (in Ukrainian) |
|
| Author |
Ivan Franko Lviv State University
|
| Abstract |
Let $Е$ be a class of real entire functions of exponential type whose zeros are real and their sequence is unbounded from below and above. The foal of the paper is to prove one necessary condition that $f \in E$ belongs to the class
$L^p(-\infty, \infty), p \geq 1$, i.e.
$$
\int_{-\infty}^{\infty} |f(x)|^p dx < \infty,
(1)
$$
and that the conditions is not sufficient. The requirement of bilateral unboundedness of the sequence of zeros in
the definition of class $E$ is natural, since it is necessarily
fulfilled for exponential type functions from $L^p$, which
follows from the well-known Lindelöf theorem [1, p.85] and from
the property $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$ [2, p.98].
|
| Keywords |
entire function, exponential type, real zero
|
| DOI |
doi:10.30970/ms.1.55-60
|
Reference |
1. Гольдберг А.А., Островский И.В. Распределение значений
мероморфных функций.- М.: Наука, 1970.- 592 с.
2. Young R.M. An introduction to nonharmonic Fourier series.- N.Y.: Academic Press, 1980.- 246 р. 3. Титчмарш Е. Теория функций.- М.;Л.: Гостехиздат.- 1951.- 506 с. 4. Calvert J. Some generalizations of Opial's inequality //Proc. Amer. Math. Soc.- 1987.- Vol.18.-P.72-75. 5. Mitrinović D.S. Analytic inequalities.- B.: Springer, 1970.- 400 р. |
| Pages |
55-60
|
| Volume |
1
|
| Year |
1991
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |