Almost zip Bezout domain
Abstract
J. Zelmanowitz introduced the concept of a ring, which we call a zip ring. In this paper we characterize a commutative Bezout domain whose finite homomorphic images are zip rings modulo its nilradical.
References
Anderson D. A note on minimal prime ideals, Proc. Amer. Math. Soc. 1994, 122 (1), 13–14.
Estes D., Ohm J. Stable range in commutative rings, J. Alg. 1967, 7 (3), 343–362.
De Marco G. Projectivity of pure ideals, Rendic. Sem. Matem. Univ. Pad. 1983, 69, 289–304.
Faith C. Rings with zero intersection property on annihilators: zip rings, Publ. Matem. 1989, 33 (2), 329–338.
Kaplansky I. Elementary divisors and modules, Trans. Amer. Math. Soc. 1949, 66, 464–491.
Kaplansky I. Commutative rings, Univ. of Chicago Press, Chicago, IL, 1974.
Matlis E. Commutative semi-coherent and semi-regular rings, J. Alg. 1985, 95, 343–372.
Shores T., Wiegand R. Decompositions of modules and matrices, Bull. Amer. Math. Soc. 1973, 79 (6), 1277–1280.
Zabavsky B. Fractionally regular Bezout rings, Matem. Stud. 2009, 32 (1), 76–80.
Zelmanowitz J. The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 1976, 57 (2), 213–216.
Copyright (c) 2020 O.M. Romaniv, B.V. Zabavsky
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.