Jost solutions of Schrodinger operators with reflectionless operator- valued potentials
Abstract
Let H be a separable Hilbert space, and let H be the Hilbert space of square integrable functions f:R→H. In this paper, we consider the reflectionless Schr\"odinger operator Tqf=−f″ acting in \mathcal{H} and study the corresponding Jost solutions, i.e., solutions of the equation
-y''+qy=\lambda^2 y
with a reflectionless operator-valued potential q. In particular, we provide an explicit formula for the Jost solutions in terms of solutions of the Riccati equation S'(x)=KS(x)+S(x)K-2S(x)KS(x), \qquad x\in\mathbb{R},
where K\in \mathcal{B}_+(H)\setminus\{0\}, S\colon \mathbb{R}\to \mathcal{B}(H). Here \mathcal{B}(H) is the Banach algebra of all linear continuous operators acting in H, and \mathcal{B}_+(H)=\{A\in \mathcal{B}(H)\mid A\geq 0\}.
References
Ya.V. Mykytyuk, N.S. Sushchyk, An operator Riccati equation and reflectionless Schrodinger operators, Mat. Stud.,61 (2024), №2, 176–187.
F. Gesztesy, R. Weikard, M. Zinchenko, On spectral theory for Schrodinger operators with operator-valued potentials, J. Diff. Equat. 255 (2013), №7, 1784–1827.
V.A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977(in Russian); Engl. transl.: Birkhauser Verlag, Basel, 1986.
V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.
F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions, Duke Math. J., 68 (1992), №1, 101–150.
I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.
S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4, 490–528.
R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrodinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527.
Copyright (c) 2025 Ya. Mykytyuk, N. Sushchyk

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.