Jost solutions of Schrodinger operators with reflectionless operator- valued potentials

  • Ya. Mykytyuk Ivan Franko National University of Lviv Lviv, Ukraine
  • N. Sushchyk Ivan Franko National University of Lviv
Keywords: Schrödinger operator;, Jost solution;, reflectionless potentials;, operator Riccati equation

Abstract

Let H be a separable Hilbert space, and let H be the Hilbert space of square integrable functions f:RH. In this paper, we consider the reflectionless Schr\"odinger operator Tqf=f acting in \mathcal{H} and study the corresponding Jost solutions, i.e., solutions of the equation
-y''+qy=\lambda^2 y
with a reflectionless operator-valued potential q. In particular, we provide an explicit formula for the Jost solutions in terms of solutions of the Riccati equation S'(x)=KS(x)+S(x)K-2S(x)KS(x), \qquad x\in\mathbb{R},
where K\in \mathcal{B}_+(H)\setminus\{0\}, S\colon \mathbb{R}\to \mathcal{B}(H). Here \mathcal{B}(H) is the Banach algebra of all linear continuous operators acting in H, and \mathcal{B}_+(H)=\{A\in \mathcal{B}(H)\mid A\geq 0\}.

Author Biographies

Ya. Mykytyuk, Ivan Franko National University of Lviv Lviv, Ukraine

Ivan Franko National University of Lviv
Lviv, Ukraine

N. Sushchyk, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv
Lviv, Ukraine

References

Ya.V. Mykytyuk, N.S. Sushchyk, An operator Riccati equation and reflectionless Schrodinger operators, Mat. Stud.,61 (2024), №2, 176–187.

F. Gesztesy, R. Weikard, M. Zinchenko, On spectral theory for Schrodinger operators with operator-valued potentials, J. Diff. Equat. 255 (2013), №7, 1784–1827.

V.A. Marchenko, Sturm–Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977(in Russian); Engl. transl.: Birkhauser Verlag, Basel, 1986.

V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.

F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions, Duke Math. J., 68 (1992), №1, 101–150.

I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.

S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4, 490–528.

R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schrodinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527.

Published
2025-03-26
How to Cite
Mykytyuk, Y., & Sushchyk, N. (2025). Jost solutions of Schrodinger operators with reflectionless operator- valued potentials. Matematychni Studii, 63(1), 62-76. https://doi.org/10.30970/ms.63.1.62-76
Section
Articles