Sharp estimates of the Toeplitz determinants of certain order for the primary subclasses of univalent functions
Abstract
The primary object of this paper is to investigate sharp estimate to the Toeplitz determinants of third order for the class of bounded turning functions and fourth order for the class of starlike and convex functions in the open unit disk $\mathbb{D},$ which are the fundamental subclasses of univalent functions. The practical tools applied in the derivation of our main results are the coefficient inequalities for the analytic in $\mathbb{D}$ functions from the Carath\'{e}odory class. The problem of finding sharp estimates to the Toeplitz determinants for the function $f,$ when it is a member of certain subclass of univalent functions is technically difficult in the case when $q = 4$ and $s\in\{1, 2\}$, than that in the case when $q=3$ and $s\in\{1, 2\}.$ Here, in our present investigation, we have successfully derived the sharp bounds of third -order namely $T_{3,2}\big(f\big)$ for the class of Bounded turning functions and fourth-order Toeplitz determinants namely $T_{4,1}\big(f\big)$ and $T_{4,2}\big(f\big)$ for the class of starlike and convex functions. With the motivation of these results, researchers may obtain bounds (sharp) for other classes of analytic functions of higher order Toeplitz determinants.References
Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., s1-41 (1966), №1, 111–122. https://doi.org/10.1112/jlms/s1-41.1.111
Ch. Pommerenke, On the Hankel determinants of Univalent functions, Mathematika, 14 (1967), №1, 108–112. https://doi.org/10.1112/S002557930000807X
Y.J. Sim, A. Lecko, D.K. Thomas, The second Hankel determinant for strongly convex and Ozaki close- to-convex functions, Ann. Mat. Pura Appl., 200 (2021), 2515–2533. https://doi.org/10.1007/s10231-021-01089-3
A. Vasudevarao, A. Lecko, D.K. Thomas, Hankel, Toeplitz and Hermitian-Toeplitz determinants for Ozaki close-to-convex functions, Mediterr. J. Math., 19 (2022), 22. https://doi.org/10.1007/s00009-021-01934-y
M. Fekete, G. Szego¨, Eine Bemerkung ´’uber ungerade schlichte Funktionen, J. Lond. Math. Soc., s1-8 (1933), №2, 85–89. https://doi.org/10.1112/jlms/s1-8.2.85
A. Janteng, S.A. Halim, M. Darus, Hankel Determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), №13, 619–625.
A. Janteng, S.A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2006), №2, 1–5.
K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, V.6 (Y. J. Cho, Editor), Nova Science Publishers, New York, 2010, 1–7.
S. Banga, S.S. Kumar, The sharp bounds of the second and third Hankel determinants for the class SL∗, Math. Slovaca, 70 (2020), 849–862.
O.S. Kwon, A. Lecko, Y.J. Sim, The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc., 42 (2019), 767–780.
B. Kowalczyk, A. Lecko, Y.J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), 435–445.
B. Rath, K.S. Kumar, D.V. Krishna, A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2, Complex Anal. Oper. Theory, 16 (2022), Article ID 65, 1–8.
H.M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526.
P. Zaprawa, M. Obradovi´c, N. Tuneski, Third Hankel determinant for univalent starlike functions, Rev. Real Acad. Cienc. Exactas F´is. Natur. Ser. A Mat. (RACSAM), 115 (2021), Article ID 49, 1–6.
K. Ye, L.H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16, (2016), 577–598.
D.K. Thomas, S.A. Halim, Toeplitz matrices whose elements are the coefficients of starlike and close-to- convex functions, Bull. Malays. Math. Sci. Soc., 40 (2017), №4, 1781–1790.
P.L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften, V.259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), №2, 251–257.
R.J. Libera, E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), №2, 225–230.
Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Go¨ttingen, 1975.
T. Hayami, S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (2010), №52, 2573–2585.
A.E. Livingston, The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21 (1969), №3, 545–552.
M. Arif, M. Raza, Huo Tang, Shehzad Hussain, Hassan Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), №1, 1615–1630.
Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, Ch. Vijaya Kumar, N. Vani, Fifth Hankel determinant for Multivalent Bounded turning functions of order α, J. Ind. Math. Soc., 90 (2023), №3–4, 289–308.
M.D. Firoz Ali, D.K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), №2, 253–264. https://doi.org/10.1017/S0004972717001174
Copyright (c) 2025 Bareh Winne, D. Vamshee Krishna, Rath Biswajit

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.