Isomorphisms of algebras of symmetric functions on spaces $\ell_p$
Abstract
The work is devoted to the study of algebras of entire symmetric functions on some Banach spaces of sequences. A function on a vector space is called symmetric with respect to some fixed group $G$ of operators acting on this space, or $G$-symmetric, if it is invariant under the action of elements of the group $G$ on its argument. For different vector spaces there exist some natural groups of symmetries. In the case of vector spaces of sequences the most natural are groups of operators permuting coordinates of sequences. Such groups of operators are generated by some groups of bijections on the set $\mathbb{N}$ of positive integers. The most commonly used for this purpose is the group $\mathcal{S}$ of all bijections on $\mathbb{N}.$ We consider entire functions and polynomials that are symmetric with respect to the group of operators, generated by $\mathcal{S},$ on the complex Banach space $\ell_p(\mathbb{C}^n)$ of all absolutely summable in a power $p\in [1,+\infty)$ sequences of $n$-dimensional complex vectors. We construct some natural isomorphism between the space $\ell_p(\mathbb{C}^n)$ and its partial case -- the classical Banach space $\ell_p.$ Also we construct the group of operators on $\ell_p$ that is consistent with the isomorphism and the above-mentioned group of operators on $\ell_p(\mathbb{C}^n).$ This group is generated by the subgroup of $\mathcal{S}$, elements of which permute elements of $\mathbb{N}$ ``by blocks''. We obtain the isomorphism between Frechet algebras of complex-valued entire functions of bounded type on $\ell_p$ and $\ell_p(\mathbb{C}^n)$ that are symmetric with respect to the above-mentioned respective groups of operators. The respective subalgebras of continuous symmetric polynomials on these spaces are also isomorphic.
References
R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc., 48 (2016), №5, 779–796. doi:10.1112/blms/bdw043
A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the Cartesian product of $ell_p$-spaces, Axioms, 11 (2022), №2, art. no.41. doi:10.3390/axioms11020041
I.V. Burtnyak, Yu.Yu. Chopyuk, S.I. Vasylyshyn, T.V. Vasylyshyn, Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions, Carpathian Math. Publ., 15 (2023), №2, 411–419. doi:10.15330/cmp.15.2.411-419
I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), №1, 125–142. doi:10.1017/S0013091509001655
I. Chernega, P. Galindo, A. Zagorodnyuk, On the spectrum of the algebra of bounded-type symmetric analytic functions on $ell_1$ Math. Nachr., (2024). doi:10.1002/mana.202300415
M. Gonzalez, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. Lond. Math. Soc., 59 (1999), №2, 681–697. doi:10.1112/S0024610799007164
O.V. Handera-Kalynovska, V.V. Kravtsiv, The Waring-Girard formulas for symmetric polynomials on spaces $ell_p$, Carpathian Math. Publ., 16 (2024), №2, 407–413. doi:10.15330/cmp.16.2.407-413
V. Kravtsiv, The analogue of Newton’s formula for block-symmetric polynomials, International Journal of Mathematical Analysis, 10 (2016), №5–8, 323–327. doi:10.12988/ijma.2016.617
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $ell_p(mathbb{C}^n)$, J. Funct. Spaces, 2017 (2017), Article ID 4947925, 8 p. doi:10.1155/2017/4947925
V.V. Kravtsiv, A.V. Zagorodnyuk, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci. (N.Y.), 246 (2020), №2, 245–255. doi:10.1007/s10958-020-04734-z
V.V. Kravtsiv, A.V. Zagorodnyuk, Spectra of algebras of block-symmetric analytic functions of bounded type, Mat. Stud., 58 (2022), №1, 69–81. doi:10.30970/ms.58.1.69-81
A.S. Nemirovskii, S.M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR Sbornik, 21 (1973), №2, 255–277. doi:10.1070/SM1973v021n02ABEH002016
Z. Novosad, S. Vasylyshyn, A. Zagorodnyuk, Countably generated algebras of analytic functions on Banach spaces, Axioms, 12 (2023), №8, Article number 798. doi:10.3390/axioms12080798
S.I. Vasylyshyn, Spectra of algebras of analytic functions, generated by sequences of polynomials on Banach spaces, and operations on spectra, Carpathian Math. Publ., 15 (2023), №1, 104–119. doi:10.15330/cmp.15.1.104-119
T. Vasylyshyn, Symmetric functions on spaces $ell_p(mathbb{R}^n)$ and $ell_p(mathbb{C}^n)$, Carpathian Math. Publ., 12 (2020), №1, 5–16. doi:10.15330/cmp.12.1.5-16
T. Vasylyshyn, Algebras of symmetric analytic functions on Cartesian powers of Lebesgue integrable in a power $pin[1,+infty)$ functions, Carpathian Math. Publ., 13 (2021), №2, 340–351. doi:10.15330/cmp.13.2.340-351
T. Vasylyshyn, Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions, Carpathian Math. Publ., 16 (2024), №1, 174–189. doi:10.15330/cmp.16.1.174-189
T. Vasylyshyn, V. Zahorodniuk, Weakly symmetric functions on spaces of Lebesgue integrable functions, Carpatian Math. Publ., 14 (2022), №2, 437–441. doi:10.15330/cmp.14.2.437-441
T. Vasylyshyn, V. Zahorodniuk, On isomorphisms of algebras of entire symmetric functions on Banach spaces, J. Math. Anal. Appl., 529 (2024), №2, Article number 127370. doi:10.1016/j.jmaa.2023.127370
Copyright (c) 2025 T. V. Vasylyshyn

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.