Composition of entire function and analytic functions in the unit ball with a vanished gradient
Abstract
The composition $H(z)=f(\Phi(z))$ is studied,
where $f$ is an entire function of a single complex variable and $\Phi$ is an analytic function
in the $n$-dimensional unit ball with a vanished gradient.
We found conditions by the function $\Phi$ providing boundedness of the $\mathbf{L}$-index in joint variables for the function $H$, if the function $f$ has bounded $l$-index for some positive continuous function $l$
and $\mathbf{L}(z)= l(\Phi(z))(\max\{1,|\Phi_{z_1}'(z)|\},\ldots, \max\{1,|\Phi_{z_n}'(z)|\}),$ $z\in\mathbb{B}^n.$
Such a constructed function $\mathbf{L}$ allows us to consider a function $\Phi$ with a nonempty zero set for its gradient.
The obtained results complement earlier published results with $\mathop{grad}\Phi(z)=(\frac{\partial \Phi(z)}{\partial z_1}, \ldots, \frac{\partial \Phi(z)}{\partial z_j},\ldots,\frac{\partial \Phi(z)}{\partial z_n})\ne \mathbf{0}.$
Also, we study a more general composition $H(\mathbf{w})=G(\mathbf{\Phi}(\mathbf{w}))$, where
$G: \mathbb{C}^n\to \mathbb{C}$ is an entire function of the bounded $\mathbf{L}$-index in joint variables,
$\mathbf{\Phi}: \mathbb{B}^m\to \mathbb{C}^n$ is a vector-valued analytic function, and
$\mathbf{L}: \mathbb{C}^n\to\mathbb{R}^n_+$ is a continuous function.
If the $\mathbf{L}$-index of the function $G$ equals zero, then we construct a function
$\widetilde{\mathbf{L}}: \mathbb{B}^m\to\mathbb{R}^m_+$ such that the function $H$ has bounded
$\widetilde{\mathbf{L}}$-index in the joint variables $w_1,$ $\ldots,$ $w_m$.
These results are also new in one-dimensional case, i.e. for functions analytic in the unit disc.
References
A. Bandura, T. Salo, O. Skaskiv, L-Index in joint variables: sum and composition of an entire function with a function with a vanished gradient, Fractal and Fractional, 7 (2023), No8, article ID 593. https://doi.org/10.3390/fractalfract7080593
A.I. Bandura, O.B. Skaskiv, Boundedness of L-index for the composition of entire functions of several variables, Ukr. Math. J., 70 (2019), 1538–1549. https://doi.org/10.1007/s11253-019-01589-9
A.I. Bandura, Boundedness of L-index in joint variables for composition of analytic functions in the unit ball, Asian-Eur. J. Math., 14 (2021), No4, 2150054. https://doi.org/10.1142/S1793557121500546
A. Bandura, O. Skaskiv, Sufficient conditions of boundedness of L-index and analog of Hayman’s theorem for analytic functions in a ball, Stud. Univ. Babeş-Bolyai Math., 63 (2018), No4, 483–501. https://doi.org/10.24193/subbmath.2018.4.06
A. Bandura, O. Skaskiv, L. Smolovyk, Slice holomorphic solutions of some directional differential equations with bounded L-index in the same direction, Demonstratio Math., 52 (2019), No1, 482–489. https://doi.org/10.1515/dema-2019-0043
A.I. Bandura, T.M. Salo, O.B. Skaskiv, Slice holomorphic functions in the unit ball: boundedness of L-index in a direction and related properties, Mat. Stud., 57 (2022), No1, 68–78. https://doi.org/10.30970/ms.57.1.68-78
A. Bandura, P. Kurliak, O. Skaskiv, Some Results on Composition of Analytic Functions in a Unit Polydisc, Universal Journal of Mathematics and Applications, 7 (2024), No3, 121–128. https://doi.org/10.32323/ujma.1444221
F. Nuray, Bounded index and four dimensional summability methods, Novi Sad J. Math., 49 (2019), 73–85. https://doi.org/10.30755/NSJOM.08285.
B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., 11 (1968), 298–307.
A.A. Goldberg, M.N. Sheremeta, Existence of an entire transcendental function of bounded l-index, Math. Notes, 57 (1995), 88–90. https://doi.org/10.1007/BF02309399.
M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47 (2017), 207–210. https://doi.org/10.15330/ms.47.2.207-210.
V.O. Kushnir, On analytic in a disc functions of bounded l-index, Visn. Lviv Un-ty Ser. Mekh.-Math., 58 (2000), 21–24.
M. Sheremeta, Analytic Functions of Bounded Index. VNTL Publishers: Lviv, Ukraine, 1999.
V.P. Baksa, A.I. Bandura, T.M. Salo, O.B. Skaskiv, Note on boundedness of the L-index in the direction of the composition of slice entire functions, Mat. Stud., 58 (2022), 58–68. https://doi.org/10.30970/ms.58.1.58-68.
A.I. Bandura, O.B. Skaskiv, I.R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14 (2022), 95–104. https://doi.org/10.15330/cmp.14.1.95-104.
M.M. Sheremeta, Y.S. Trukhan, Properties of analytic solutions of three similar differential equations of the second order, Carp. Math. Publ., 13 (2021), 413–425. https://doi.org/10.15330/CMP.13.2.413-425.
M.M. Sheremeta, Y.S. Trukhan, Properties of analytic solutions of a differential equation, Mat. Stud., 52 (2019), No2, 138–143. https://doi.org/10.30970/ms.52.2.138-143.
W.K. Hayman, Differential inequalities and local valency, Pac. J. Math., 44 (1973), 117–137. http://doi.org/10.2140/pjm.1973.44.117.
F. Nuray, R.F. Patterson, Vector-valued bivariate entire functions of bounded index satisfying a system of differential equations, Mat. Stud., 49 (2018), No1, 67–74. https://doi.org/10.15330/ms.49.1.67-74.
L.F. Heath, Vector-valued entire functions of bounded index satisfying a differential equation, J. Res. NBS, 83B (1978), 75–79.
R. Roy, S.M. Shah, Vector-valued entire functions satisfying a differential equation, J. Math. Anal. Appl., 116 (1986), 349–362.
R. Roy, S.M. Shah, Growth properties of vector entire functions satisfying differential equations, Indian J. Math., 28 (1986), 25–35.
A.I. Bandura, T.M. Salo, O.B. Skaskiv, Vector-valued entire functions of several variables: some local properties, Axioms, 11 (2022), 31. https://doi.org/10.3390/axioms11010031.
G.H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann., 206 (1973), 215–223. https://doi.org/10.1007/BF01429209.
Copyright (c) 2024 A. I. Bandura, T. M. Salo, O. B. Skaskiv
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.