On the dual space of a Banach space of entire functions

  • Ya. Mykytyuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • N. Sushchyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • D. Lukivska Ivan Franko National University of Lviv, Lviv, Ukraine
Keywords: Banach spaces, entire functions, discrete Hilbert transfor

Abstract

Let \( \mathcal{L}_1 \) denote the subspace of \( L_1(\mathbb{R}) \) consisting of the restrictions to \( \mathbb{R} \) of entire functions of exponential type at most \( \pi \), equipped with the \( L_1(\mathbb{R}) \)-norm. In this paper, we describe the dual space \( \mathcal{L}_1' \), showing that it is isomorphic to the Banach space \( \text{BMO}(\mathbb{Z}) \) of sequences \( x\colon \mathbb{Z} \to \mathbb{C} \) with bounded mean oscillation on \( \mathbb{Z} \). This result is an analogue of Fefferman's classical description of the dual of the Hardy space \( H_1(\mathbb{C}_+) \) of functions analytic in the upper half-plane. A central role in the construction of \( \mathcal{L}_1' \) is played by the discrete Hilbert transform.

Author Biographies

Ya. Mykytyuk, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

N. Sushchyk, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

D. Lukivska, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

References

B.Ya. Levin, Lectures on entire functions, in collaboration with G.Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translations of Mathematical Monographs, V.150, AMS, 1996.

R. Banuelos, M. Kwasnicki, On the lp-norm of the discrete Hilbert transform, Duke Math. J., 168, (2019), №3, 471–504. https://doi.org/10.1215/00127094-2018-0047.

F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415–426. http://dx.doi.org/10.1002/cpa.3160140317.

G. Dafni, R. Gibara, A. Lavigne, BMO and the John-Nirenberg Inequality on Measure Spaces, Anal. Geom. Metr. Spaces 2020; 8: 335-362. https://doi.org/10.1515/agms-2020-0115.

J.B. Garnett, Bounded analytic functions, Academic Press, 1981.

E.C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z., 25 (1926), №1, 321–347. MR 1544814.

N. Sushchyk, D. Lukivska, Some inequalities for entire functions, Mat. Stud. 62 (2024), №1, 109–112. https://doi.org/10.30970/ms.62.1.109-112.

S.G. Krein, Ju.I. Petunin, E.M. Semenov, Interpolation of linear operators, Transl. Math. Monographs, V.54, AMS, 1982.

Published
2024-12-13
How to Cite
Mykytyuk, Y., Sushchyk, N., & Lukivska, D. (2024). On the dual space of a Banach space of entire functions. Matematychni Studii, 62(2), 155-167. https://doi.org/10.30970/ms.62.2.155-167
Section
Articles