On the dual space of a Banach space of entire functions
Abstract
Let \( \mathcal{L}_1 \) denote the subspace of \( L_1(\mathbb{R}) \) consisting of the restrictions to \( \mathbb{R} \) of entire functions of exponential type at most \( \pi \), equipped with the \( L_1(\mathbb{R}) \)-norm. In this paper, we describe the dual space \( \mathcal{L}_1' \), showing that it is isomorphic to the Banach space \( \text{BMO}(\mathbb{Z}) \) of sequences \( x\colon \mathbb{Z} \to \mathbb{C} \) with bounded mean oscillation on \( \mathbb{Z} \). This result is an analogue of Fefferman's classical description of the dual of the Hardy space \( H_1(\mathbb{C}_+) \) of functions analytic in the upper half-plane. A central role in the construction of \( \mathcal{L}_1' \) is played by the discrete Hilbert transform.
References
B.Ya. Levin, Lectures on entire functions, in collaboration with G.Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translations of Mathematical Monographs, V.150, AMS, 1996.
R. Banuelos, M. Kwasnicki, On the lp-norm of the discrete Hilbert transform, Duke Math. J., 168, (2019), №3, 471–504. https://doi.org/10.1215/00127094-2018-0047.
F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415–426. http://dx.doi.org/10.1002/cpa.3160140317.
G. Dafni, R. Gibara, A. Lavigne, BMO and the John-Nirenberg Inequality on Measure Spaces, Anal. Geom. Metr. Spaces 2020; 8: 335-362. https://doi.org/10.1515/agms-2020-0115.
J.B. Garnett, Bounded analytic functions, Academic Press, 1981.
E.C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z., 25 (1926), №1, 321–347. MR 1544814.
N. Sushchyk, D. Lukivska, Some inequalities for entire functions, Mat. Stud. 62 (2024), №1, 109–112. https://doi.org/10.30970/ms.62.1.109-112.
S.G. Krein, Ju.I. Petunin, E.M. Semenov, Interpolation of linear operators, Transl. Math. Monographs, V.54, AMS, 1982.
Copyright (c) 2024 Ya. Mykytyuk, N. Sushchyk, D. Lukivska
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.