Asymptotic estimates for entire functions of minimal growth with given zeros
Abstract
Let $\zeta=(\zeta_n)$ be an arbitrary complex sequence such that $0<|\zeta_1|\le|\zeta_2|\le\dots$ and $\zeta_n\to\infty$ as $n\to\infty$, let $n_\zeta(r)$ and $N_\zeta(r)$ be the counting function and the integrated counting function of this sequence, respectively. By $\mathcal{E}_\zeta$ we denote the class of all entire functions whose zeros are precisely the $\zeta_n$, where a complex number that occurs $m$ times in the sequence $\zeta$ corresponds to a zero of multiplicity $m$. Suppose that $\Phi$ is a convex function on $\mathbb{R}$ such that $\Phi(\sigma)/\sigma\to+\infty$ as $\sigma\to+\infty$. It is proved that there exists an entire function $f\in\mathcal{E}_\zeta$ such that
$$
\varlimsup_{r\to+\infty}\frac{\ln\ln M_f(r)}{\Phi(\ln r)}\le\varlimsup_{r\to+\infty}\frac{\ln n_\zeta( r)}{\Phi(\ln r)},
$$
where $M_f(r)$ denotes the maximum modulus of the function $f$, and it is shown that the above inequality implies the inequality
$$
\varlimsup_{r\to+\infty}\frac{\ln\ln M_f(r)}{\Phi(\ln r)}\le\varlimsup_{r\to+\infty}\frac{\ln N_\zeta( r)}{\Phi(\ln r)}+\varlimsup_{\sigma\to+\infty}\frac{\ln\Phi'_+(\sigma)}{\Phi(\sigma)}.
$$
The formulated result is a consequence of the following more general statement: if the right-hand derivative $\Phi'_+$ of the function $\Phi$ assumes only integer values and $\sum_{n=1}^\infty e^{-\Phi(\ln|\zeta_n|)}<+\infty$, then there exists an entire function $f\in\mathcal{E}_\zeta$ such that $\ln M_f(r)=o(e^{\Phi(\ln r)})$ as $r \to+\infty$.
References
A.A. Gol’dberg, I.V. Ostrovskii, Value distribution of meromorphic functions. Transl. Math. Monogr. Vol. 236. Amer. Math. Soc., Providence, RI, 2008.
A.A. Kondratyuk, Fourier series and meromorphic functions. Vyshcha Shkola, Lviv, 1988. (in Russian)
L.A. Rubel, B.A. Taylor, A Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France, 96 (1968), 53–96. doi.org/10.24033/bsmf.1660
A.A. Gol’dberg, The representation of a meromorphic function in the form of a quotient of entire functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (1972), 13–17. (in Russian)
W. Bergweiler, Canonical products of infinite order, J. Reine Angew. Math., 430 (1992), 85–107. doi.org/10.1515/crll.1992.430.85
W. Bergweiler, A question of Gol’dberg concerning entire functions with prescribed zeros, J. Anal. Math., 63 (1994), №1, 121–129. doi.org/10.1007/BF03008421
J. Miles, On the growth of entire functions with zero sets having infinite exponent of convergence, Ann. Acad. Sci. Fenn. Math., 27 (2002), 69–90.
I.V. Andrusyak, P.V. Filevych, The growth of entire function with zero sets having integer-valued exponent of convergence, Mat. Stud., 32 (2009), №1, 12–20. (in Ukrainian)
I.V. Andrusyak, P.V. Filevych, The minimal growth of entire functions with given zeros along unbounded sets, Mat. Stud., 54 (2020), №2, 146–153. doi.org/10.30970/ms.54.2.146-153
I.V. Andrusyak, P.V. Filevych, The growth of an entire function with a given sequence of zeros, Mat. Stud., 30 (2008),№2, 115–124.
I.V. Andrusyak, P.V. Filevych, Comparative growth of an entire function and the integrated counting function of its zeros, Carpathian Math. Publ., 16 (2024), №1, 5–15. doi.org/10.15330/cmp.16.1.5-15
I.V. Andrusyak, P.V. Filevych, The minimal growth of an entire function with given zeros, Nauk. Visn. Chernivets’kogo Univ. Mat., 421 (2008), 13–19. (in Ukrainian)
I.V. Andrusyak, P.V. Filevych, O.H. Oryshchyn, Minimal growth of entire functions with prescribed zeros outside exceptional sets, Mat. Stud., 58 (2022), №1, 51–57. doi.org/10.30970/ms.58.1.51-57
M.M. Sheremeta, A remark to the construction of canonical products of minimal growth, Mat. Fiz. Anal. Geom., 11 (2004), №2, 243–248.
M.M. Sheremeta, S.I. Fedynyak, On the derivative of a Dirichlet series, Siberian Math. J., 39 (1998), №1, 181–197. doi.org/10.1007/BF02732373
P.V. Filevych, The growth of entire and random entire functions, Mat. Stud., 30 (2008), №1, 15–21. (in Ukrainian)
Copyright (c) 2024 P. V. Filevych
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.