# Distribution of unit mass on one fractal self-similar web-type curve

### Abstract

In the article, we study structural, spectral, topological, metric and fractal properties of distribution of complex-valued random variable

$\tau=\sum\nolimits_{n=1}^{\infty}\frac{2\varepsilon_{\tau}}{3^n}\equiv\Delta^g_{\tau_1...\tau_n...}$, where $(\tau_n)$ is a~sequence of independent random variables taking the values $0,1,\cdots,6$ with the probabilities $p_{0n}$, $p_{1n},\cdots,p_{6n}$; $\varepsilon_{6}=0$, $\varepsilon_0$, $\varepsilon_1,\cdots,\varepsilon_5$ are 6th roots of unity.

We prove that the set of values of random variable $\tau$ is self-similar six petal snowflake which is a fractal curve $G$ of spider web type with dimension $\log_37$. Its outline is the Koch snowflake.

We establish that $\tau$ has either a discrete or a singularly continuous distribution with respect to two-dimensional Lebesgue measure. The criterion of discreteness for the distribution is found and its point spectrum (set of atoms) is described. It is proved that the point spectrum is a countable everywhere dense set of values of the random variable $\tau$, which is the tail set of the seven-symbol representation of the points of the curve $G$.

In the case of identical distribution of the random variables $\tau_n$ (namely: $p_{kn}=p_k$) we establish that the spectrum of distribution $\tau$ is a self-similar fractal and that the essential support of density is the fractal Besicovitch-Eggleston type set. The set is defined by terms digits frequencies and has the fractal dimension $\alpha_0(E)=\frac{\ln {p_0^{p_0}\cdots p_6^{p_6}}}{-\ln 7}$ with respect to the Hausdorff-Billingsley $\alpha$-measure. The measure is a probabilistic generalization of the Hausdorff $\alpha$-measure. In this case, the random variables $\tau=\Delta^g_{\tau_1\cdots\tau_n\cdots}$ and $\tau'=\Delta^g_{\tau_1'...\tau_n'...}$ defined by different probability vectors $(p_0,\cdots,p_6)$ and $(p'_0,\cdots,p'_6)$ have mutually orthogonal distributions.

### References

A.S. Besicovitch, Sets of fractional dimension. 2: On the sum of digits of real numbers representet in diadic system, Mathematische Annalen, 110 (1934), №3, 321–329.

P. Billingsley, Ergodic Theory and Information. John Wiley & Sons, Inc., New York, 1965. XIII, 193 p.

E. Borel, Les probabilies denombrables et leurs applications arithmetiques, Rend. Circ. Mat. Palermo, (1909), 247–271.

H.G. Eggleston, The fractional dimension of a setdefined by desimal properties, Quart. J. Math., 20 (1949), 31–36.

Y. Chen, Fractal texture and structure of central place systems, Fractals, 28 (2020), №01, 2050008.

P. Levy, Sur les series dont les termes sont des variables independantes, Studia Math., 3 (1931), 119–155.

B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., New York, 1982, 1922–1929.

M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation, Int. Journal of Math. Analysis, 7 (2013), №64, 3155–3167. doi: 10.12988/ijma.2013.311278

M.V. Pratsiovytyi, Two-symbol systems of encoding of real numbers and their aplications, Naukova Dumka, Kyiv, 2022. (in Ukrainian)

M.V. Pratsiovytyi, V.M. Kovalenko, Koch snowflake as a parametrically defined plane curve, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Dragomanova. Ser 1. Fiz.-Mat. Nauky, 16 (2014), №2, 61–80. (in Ukrainian)

M.V. Pratsiovytyi, V.M. Kovalenko, Probability measures on fractal curves (probability distributions on Vicsek fractal), Random Operators and Stochastic Equations, 23 (2015), №3, 161–168.

M.V. Pratsiovytyi, Ya.V. Goncharenko, I.M. Lysenko, S.P. Ratushnyak, Fractal functions of exponential type that is generated by the $Q^*_2$-representation of argument, Mat. Stud., 56 (2021), №2, 133–143.

M.V. Pratsiovytyi, Ya.V. Goncharenko, N.V. Dyvliash, S.P. Ratushnyak, Inversor of digits of $Q^*_2$-representation of numbers, Mat. Stud., 55 (2021), №1, 37–43.

M.V. Pratsiovytyi, Fractal approach in investigation of singular probability distribution, Kyiv, Nats. Pedagog. Mykhailo Dragomanov Univ., 1998. (in Ukrainian)

B. Jessen, A. Wintner, Distribution functions and Rieman Zeta function, Trans. Amer. Math. Soc., 38 (1935), №1, 48–88.

*Matematychni Studii*,

*62*(1), 21-30. https://doi.org/10.30970/ms.62.1.21-30

Copyright (c) 2024 M. V. Pratsovytyi, I. M. Lysenko, S. P. Ratushniak, O. A. Tsokolenko

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.