Infinite locally finite groups groups with the given properties of the norm of Abelian non-cyclic subgroups
Abstract
In the paper, the properties of infinite locally finite groups with non-Dedekind locally nil\-potent norms of Abelian non-cyclic subgroups are studied. It is proved that such groups are finite extensions of a quasicyclic subgroup and contain Abelian non-cyclic $p$-subgroups for a unique prime $p$. In particular, in the paper is prove the following assertions: 1) Let $G$ be an infinite locally finite group and contain the locally nilpotent norm $N_{G}^{A}$ with the non-Hamiltonian Sylow $p$-subgroup $(N_{G}^{A})_{p}$. Then $G$ is a finite extension of a quasicyclic $p$-subgroup, all Sylow $p'$-subgroups are finite and do not contain Abelian non-cyclic subgroups. In particular, Sylow $q$-subgroups ($q$ is an odd prime, $q\in \pi(G)$, $q\neq p$) are cyclic, Sylow $2$-subgroups ($p\neq 2$) are either cyclic or finite quaternion $2$-groups (Theorem 1).
2) Let $G$ be a locally finite non-locally nilpotent group with the infinite locally nilpotent non-Dedekind norm $N_{G}^{A}$ of Abelian non-cyclic subgroups. Then $G=G_{p} \leftthreetimes H,$ where $G_{p}$ is an infinite $\overline{HA}_{p}$-group of one of the types (1)--(4) of Proposition~2 in present paper, which coincides with the Sylow $p$-subgroup of the norm $N_{G}^{A}$, $H$ is a finite group, all Abelian subgroups of which are cyclic, and $(|H|,p)=1$. Any element $h\in H$ of odd order that centralizes some Abelian non-cyclic subgroup $M\subset N_{G}^{A}$ is contained in the centralizer of the norm $N_{G}^{A}$. (Theorem 2).
3) Let $G$ be an infinite locally finite non-locally nilpotent group with the finite nilpotent non-Dedekind norm $N_{G}^{A}$ of Abelian non-cyclic subgroups. Then
$G=H\leftthreetimes K,$ where $H$ is a finite group, all Abelian subgroups of which are cyclic,
$\left(\left|H\right|,2\right)=1$, $K$ is an infinite 2-group of one of the types (5)--(6) of Proposition~2 (in present paper). Moreover, the norm $N_{K}^{A}$ of Abelian non-cyclic subgroups of the group $K$ is finite, $K\cap N_{G}^{A}=N_{K}^{A}$ and coincides with the Sylow 2-subgroup $(N_{G}^{A})_2$ of the norm $N_{G}^{A}$ of a group $G$.
Moreover, any element $h\in H$ of the centralizer of some Abelian non-cyclic subgroup $M \subset N_{G}^{A}$ is contained in the centralizer of the norm $N_{G}^{A}$. (Theorem 4).
References
R. Baer, Der Kern, eine charakteristische Untergruppe, Comp. Math., 1 (1935), 254–283.
V.M. Bursakin, A.I. Starostin, On splitting locally finite groups, Sbornik: Mathematics, 62 (1963), №3, 275–294. (in Russian)
S.N. Chernikov, Groups with given properties of system of subgroups, M., Nauka, 1980. (in Russian)
M.G. Drushlyak, T.D. Lukashova, F.M. Lyman, Generalized norms of groups, Algebra Discr. Math., 22 (2016), №1, 48–80.
M. de Falco, F. de Giovanni, L.A. Kurdachenko, C. Musella, The metanorm and its influence on the group structure, J. Algebra, 506 (2018), 76–91.
M. Ferrara, M. Trombetti, Large norms in group theory, J. Algebra, 646 (2024), 236–267. doi:10.1016/j.jalgebra.2024.02.007.
P. Hall, C.R. Kulatilaka, A property of locally finite groups, J. London Math. Soc., 39 (1964), 235–239. doi:10.1112/jlms/s1-39.1.235.
M.I. Kargapolov, On O.Yu. Shmidt’s problem, Sib. Math. J., 4 (1963), №1, 232–235. (in Russian)
A.G. Kurosh, Theory of groups, M., Nauka, 1967. (in Russian)
F.N. Liman, Periodic groups, all Abelian noncyclic subgroups of which are invariant. Groups with restrictions for subgroups, 1971, Kyiv, Naukova Dumka, 65–96. (in Russian)
F.M. Liman, T.D. Lukashova, On infinite groups with given properties of norm of infinite subgroups, Ukr. Math. J., 53 (2001), №5, 625–630. doi:10.1023/A:10125266221
F.N. Liman, T.D. Lukashova, On the norm of decomposable subgroups in locally finite groups, Ukr. Math. J., 67 (2015), №4, 542–551.
F.N. Liman, T.D. Lukashova, On the norm of decomposable subgroups in the non-periodic groups, Ukr.Math. J., 67 (2016), №12, 1900–1912.
T. Lukashova, Locally soluble groups with the restrictions on the generalized norms, Algebra Discr. Math., 29 (2020), №1, 85–98. doi:10.12958/adm1527.
T.D. Lukashova, Infinite locally finite groups with the locally nilpotent non-Dedekind norm of decomposable subgroups, Communications in Algebra, 48 (2020), №3, 1052–1057. doi:10.1080/00927872.2019.1677683.
T. Lukashova, M. Drushlyak, Generalized norms of groups: retrospective review and current status, Algebra Discr. Math., 34 (2022), №1, 105–131. doi:10.12958/adm1968.
T.D. Lukashova, M.G. Drushlyak, Torsion locally nilpotent groups with non-Dedekind norm of Abelian non-cyclic subgroups, Carpathian Math. Publ., 14 (2022), №1, 247–259. doi:10.15330/cmp.14.1.247-259.
T. Lukashova, M. Drushlyak, Torsion locally nilpotent groups with the non-Dedekind norm of decomposable subgroups, Adv. Group Theory Appl., 17 (2023), 51–63. doi:10.32037/agta-2023-015.
T.D. Lukashova, M.G. Drushlyak, F.M. Lyman, Conditions of Dedekindness of generalized norms in non-periodic groups, Asian-European Journal of Mathematics, 12 (2019), №1, 1950093, 11 p. doi:10.1142/S1793557119500931.
F.M. Lyman, T.D. Lukashova, Non-periodic locally soluble groups with non-Dedekind locally nilpotent norm of decomposable subgroups, Ukr. Math. J., 71 (2020), №11, 1739–1750. doi:10.1007/s11253-020-01744-7.
F.M. Lyman, T.D. Lukashova, On infinite 2-groups with non-Dedekind norm of Abelian non-cyclic subroups, Bull. Univ. Kyiv, 1 (2005), 56–64. (in Ukrainian)
F. Lyman, T. Lukashova, M. Drushlyak, On finite 2-groups with non-Dedekind norm of Abelian noncyclic subgroups, Mat. Stud., 46 (2016), №1, 20–28. doi:10.15330/ms.46.1.20-28
F. Lyman, T. Lukashova, M. Drushlyak, Finite 2-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups, Bul. Acad. Stiinte Repub. Mold. Mat., 57 (2019), №2, 3–19.
V.P. Shunkov, On locally finite groups with a minimality condition for Abelian subgroups, Algebra Logic, 9 (1970), 579–615. (in Russian)
H. Wielandt, Uber den Normalisator der Subnormalen Untergruppen, Mat. Z. 69 (1958), №5, 463–465.
Copyright (c) 2024 T. D. Lukashova, M. G. Drushlyak
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.