Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane

  • P. V. Filevych Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine
  • O. B. Hrybel Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine
Keywords: Dirichlet series, abscissa of absolute convergence, supremum modulus, maximal term, Young-conjugate function, generalized order, modified order

Abstract

Let λ=(λn)nN0 be a non-negative sequence increasing to +, τ(λ)=¯limn(lnn/λn), and D0(λ) be the class of all Dirichlet series of the form F(s)=n=0an(F)esλn absolutely convergent in the half-plane
Res<0 with an(F)0 for at least one integer n0. Also, let α be a continuous function on [x0,+) increasing to +, β be a continuous function on [a,0) such that β(σ)+ as σ0, and γ be a continuous positive function on [b,0). In the article, we investigate the growth of a Dirichlet series FD0(λ) depending on the behavior of the sequence (|an(F)|) in terms of its α,β,γ-orders determined by the equalities
Rα,β,γ(F)=¯limσ0α(max
R_{\alpha,\beta,\gamma}(F)=\varlimsup_{\sigma\uparrow0} \frac{\alpha(\max\{x_0,\gamma(\sigma)\ln M(\sigma)\})}{\beta(\sigma)},
where \mu(\sigma)=\max\{|a_n(F)|e^{\sigma\lambda_n}\colon n\ge0\} and M(\sigma)=\sup\{|F(s )|\colon \operatorname{Re}s=\sigma\} are the maximal term and the supremum modulus of the series F, respectively. In particular, if for every fixed t>0 we have \alpha(tx)\sim \alpha(x) as x\to+\infty, \beta(t\sigma)\sim t^{-\rho}\beta(\sigma) as \sigma\uparrow0 for some fixed \rho>0, 0<\varliminf_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma) \le \varlimsup_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma)<+\infty,
\Phi(\sigma)=\alpha^{-1}(\beta(\sigma))/\gamma(\sigma) for all \sigma\in[\sigma_0,0),
\widetilde{\Phi}(x)=\max\{x\sigma-\Phi(\sigma)\colon \sigma\in[\sigma_0,0)\} for all x\in\mathbb{R}, and \Delta_\Phi(\lambda)=\varlimsup_{n\to\infty}( -\ln n/\widetilde{\Phi}(\lambda_n)), then:

(a) for each Dirichlet series F\in\mathcal{D}_0(\lambda) we have
R^*_{\alpha,\beta,\gamma}(F)=\varlimsup_{n\to +\infty}\left(\frac{\ln^+|a_n(F)|}{-\widetilde{\Phi }(\lambda_n)}\right)^\rho;

(b) if \tau(\lambda)>0, then for each p_0\in[0,+\infty] and any positive function \Psi on [c,0) there exists a Dirichlet series F\in\mathcal{D}_0(\lambda) such that R^*_{\alpha,\beta,\gamma}(F)=p_0 and M(\sigma,F)\ge \Psi(\sigma) for all \sigma\in[\sigma_0,0);

 (c) if \tau(\lambda)=0, then (R_{\alpha,\beta,\gamma} (F))^{1/\rho}\le (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda) for every Dirichlet series\linebreak F\in\mathcal{D}_0(\lambda);

 (d) if \tau(\lambda)=0, then for each p_0\in[0,+\infty] there exists a Dirichlet series F\in\mathcal{D}_0(\lambda) such that R^*_{\alpha,\beta,\gamma}(F)=p_0 and (R_{\alpha,\beta,\gamma}(F))^{1/\rho}=(R ^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda).

Author Biographies

P. V. Filevych, Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine

Department of Mathematics,

Lviv Polytechnic National University

Lviv, Ukraine

O. B. Hrybel, Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine

Faculty of Mathematics and Computer Science,

Vasyl Stefanyk Precarpathian National University

Ivano-Frankivsk, Ukraine

References

E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187

P.V. Filevych, O.B. Hrybel, The growth of the maximal term of Dirichlet series, Carpathian Math. Publ., 10 (2018), №1, 79–81. https://doi: 10.15330/cmp.10.1.79-81

T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), №2, 241–257. https://doi.org/10.1070/SM8644

Yu.M. Hal’, M.M. Sheremeta, On the growth of analytic in a half-plane functions represented by Dirichlet series, Dokl. AN UkrSSR. Ser. A., (1978), №12, 1065–1067. (in Russian)

M.M. Sheremeta, On the maximum of the modulus and the maximal term of Dirichlet series, Math. Notes, 73 (2003), №3–4, 402–407. https://doi.org/10.1023/A:1023222229539

O.M. Mulyava, M.M. Sheremeta, A remark to the growth of positive functions and its application to Dirichlet series, Mat. Stud., 44 (2015), №2, 161–170. https://doi.org/10.15330/ms.44.2.161-170

L.V. Kulyavetc’, O.M. Mulyava, On the growth of a class of Dirichlet Series absolutely convergent in half-plane, Carpathian Math. Publ., 9 (2017), №1, 63–71. https://doi.org/10.15330/cmp.9.1.63-71

M.M. Sheremeta, O.M. Mulyava, The Hadamard compositions of Dirichlet series absolutely converging in half-plane, Mat. Stud., 53 (2020), №1, 13–28. https://doi.org/10.30970/ms.53.1.13-28

O.M. Mulyava, On the relative growth of Dirichlet series with zero abscissa of absolute convergence, Mat. Stud., 55 (2021), №1, 44–50. https://doi.org/10.30970/ms.55.1.44-50

A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpathian Math. Publ., 15 (2023), №1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195

P.V. Filevych, O.B. Hrybel, Global estimates for sums of absolutely convergent Dirichlet series in a halfplane, Mat. Stud., 59 (2023), №1, 60–67. https://doi.org/10.30970/ms.59.1.60-67

P.V. Filevych, O.B. Hrybel, On regular variation of entire Dirichlet series, Mat. Stud., 58 (2022), №2, 174–181. https://doi.org/10.30970/ms.58.2.174-181

Published
2024-06-19
How to Cite
Filevych, P. V., & Hrybel, O. B. (2024). Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane. Matematychni Studii, 61(2), 136-147. https://doi.org/10.30970/ms.61.2.136-147
Section
Articles