Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane
Abstract
Let λ=(λn)n∈N0 be a non-negative sequence increasing to +∞, τ(λ)=¯limn→∞(lnn/λn), and D0(λ) be the class of all Dirichlet series of the form F(s)=∑∞n=0an(F)esλn absolutely convergent in the half-plane
Res<0 with an(F)≠0 for at least one integer n≥0. Also, let α be a continuous function on [x0,+∞) increasing to +∞, β be a continuous function on [a,0) such that β(σ)→+∞ as σ↑0, and γ be a continuous positive function on [b,0). In the article, we investigate the growth of a Dirichlet series F∈D0(λ) depending on the behavior of the sequence (|an(F)|) in terms of its α,β,γ-orders determined by the equalities
R∗α,β,γ(F)=¯limσ↑0α(max
R_{\alpha,\beta,\gamma}(F)=\varlimsup_{\sigma\uparrow0} \frac{\alpha(\max\{x_0,\gamma(\sigma)\ln M(\sigma)\})}{\beta(\sigma)},
where \mu(\sigma)=\max\{|a_n(F)|e^{\sigma\lambda_n}\colon n\ge0\} and M(\sigma)=\sup\{|F(s )|\colon \operatorname{Re}s=\sigma\} are the maximal term and the supremum modulus of the series F, respectively. In particular, if for every fixed t>0 we have \alpha(tx)\sim \alpha(x) as x\to+\infty, \beta(t\sigma)\sim t^{-\rho}\beta(\sigma) as \sigma\uparrow0 for some fixed \rho>0, 0<\varliminf_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma) \le \varlimsup_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma)<+\infty,
\Phi(\sigma)=\alpha^{-1}(\beta(\sigma))/\gamma(\sigma) for all \sigma\in[\sigma_0,0),
\widetilde{\Phi}(x)=\max\{x\sigma-\Phi(\sigma)\colon \sigma\in[\sigma_0,0)\} for all x\in\mathbb{R}, and \Delta_\Phi(\lambda)=\varlimsup_{n\to\infty}( -\ln n/\widetilde{\Phi}(\lambda_n)), then:
(a) for each Dirichlet series F\in\mathcal{D}_0(\lambda) we have
R^*_{\alpha,\beta,\gamma}(F)=\varlimsup_{n\to +\infty}\left(\frac{\ln^+|a_n(F)|}{-\widetilde{\Phi }(\lambda_n)}\right)^\rho;
(b) if \tau(\lambda)>0, then for each p_0\in[0,+\infty] and any positive function \Psi on [c,0) there exists a Dirichlet series F\in\mathcal{D}_0(\lambda) such that R^*_{\alpha,\beta,\gamma}(F)=p_0 and M(\sigma,F)\ge \Psi(\sigma) for all \sigma\in[\sigma_0,0);
(c) if \tau(\lambda)=0, then (R_{\alpha,\beta,\gamma} (F))^{1/\rho}\le (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda) for every Dirichlet series\linebreak F\in\mathcal{D}_0(\lambda);
(d) if \tau(\lambda)=0, then for each p_0\in[0,+\infty] there exists a Dirichlet series F\in\mathcal{D}_0(\lambda) such that R^*_{\alpha,\beta,\gamma}(F)=p_0 and (R_{\alpha,\beta,\gamma}(F))^{1/\rho}=(R ^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda).
References
E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187
P.V. Filevych, O.B. Hrybel, The growth of the maximal term of Dirichlet series, Carpathian Math. Publ., 10 (2018), №1, 79–81. https://doi: 10.15330/cmp.10.1.79-81
T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), №2, 241–257. https://doi.org/10.1070/SM8644
Yu.M. Hal’, M.M. Sheremeta, On the growth of analytic in a half-plane functions represented by Dirichlet series, Dokl. AN UkrSSR. Ser. A., (1978), №12, 1065–1067. (in Russian)
M.M. Sheremeta, On the maximum of the modulus and the maximal term of Dirichlet series, Math. Notes, 73 (2003), №3–4, 402–407. https://doi.org/10.1023/A:1023222229539
O.M. Mulyava, M.M. Sheremeta, A remark to the growth of positive functions and its application to Dirichlet series, Mat. Stud., 44 (2015), №2, 161–170. https://doi.org/10.15330/ms.44.2.161-170
L.V. Kulyavetc’, O.M. Mulyava, On the growth of a class of Dirichlet Series absolutely convergent in half-plane, Carpathian Math. Publ., 9 (2017), №1, 63–71. https://doi.org/10.15330/cmp.9.1.63-71
M.M. Sheremeta, O.M. Mulyava, The Hadamard compositions of Dirichlet series absolutely converging in half-plane, Mat. Stud., 53 (2020), №1, 13–28. https://doi.org/10.30970/ms.53.1.13-28
O.M. Mulyava, On the relative growth of Dirichlet series with zero abscissa of absolute convergence, Mat. Stud., 55 (2021), №1, 44–50. https://doi.org/10.30970/ms.55.1.44-50
A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpathian Math. Publ., 15 (2023), №1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195
P.V. Filevych, O.B. Hrybel, Global estimates for sums of absolutely convergent Dirichlet series in a halfplane, Mat. Stud., 59 (2023), №1, 60–67. https://doi.org/10.30970/ms.59.1.60-67
P.V. Filevych, O.B. Hrybel, On regular variation of entire Dirichlet series, Mat. Stud., 58 (2022), №2, 174–181. https://doi.org/10.30970/ms.58.2.174-181
Copyright (c) 2024 P. V. Filevych, O. B. Hrybel

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.