Generalized and modified orders of growth for Dirichlet series absolutely convergent in a half-plane
Abstract
Let $\lambda=(\lambda_n)_{n\in\mathbb{N}_0}$ be a non-negative sequence increasing to $+\infty$, $\tau(\lambda)=\varlimsup_{n\to\infty}(\ln n/\lambda_n)$, and $\mathcal{D}_0(\lambda) $ be the class of all Dirichlet series of the form $F(s)=\sum_{n=0}^\infty a_n(F)e^{s\lambda_n}$ absolutely convergent in the half-plane
$\operatorname{Re}s<0$ with $a_n(F)\not=0$ for at least one integer $n\ge0$. Also, let $\alpha$ be a continuous function on $[x_0,+\infty)$ increasing to $+\infty$, $\beta$ be a continuous function on $[a,0)$ such that $\beta(\sigma)\to+\infty$ as $\sigma\uparrow0$, and $\gamma$ be a continuous positive function on $[b,0)$. In the article, we investigate the growth of a Dirichlet series $F\in\mathcal{D}_0(\lambda)$ depending on the behavior of the sequence $(|a_n(F)|)$ in terms of its $\alpha,\beta,\gamma$-orders determined by the equalities
$$
R^*_{\alpha,\beta,\gamma}(F)=\varlimsup_{\sigma\uparrow0}
\frac{\alpha(\max\{x_0,\gamma(\sigma)\ln\mu(\sigma)\})}{\beta(\sigma)},$$
$$R_{\alpha,\beta,\gamma}(F)=\varlimsup_{\sigma\uparrow0}
\frac{\alpha(\max\{x_0,\gamma(\sigma)\ln M(\sigma)\})}{\beta(\sigma)},
$$
where $\mu(\sigma)=\max\{|a_n(F)|e^{\sigma\lambda_n}\colon n\ge0\}$ and $M(\sigma)=\sup\{|F(s )|\colon \operatorname{Re}s=\sigma\}$ are the maximal term and the supremum modulus of the series $F$, respectively. In particular, if for every fixed $t>0$ we have $\alpha(tx)\sim \alpha(x)$ as $x\to+\infty$, $\beta(t\sigma)\sim t^{-\rho}\beta(\sigma)$ as $\sigma\uparrow0$ for some fixed $\rho>0$, $0<\varliminf_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma) \le
\varlimsup_{\sigma\uparrow0}\gamma(t\sigma)/\gamma(\sigma)<+\infty$,
$\Phi(\sigma)=\alpha^{-1}(\beta(\sigma))/\gamma(\sigma)$ for all $\sigma\in[\sigma_0,0)$,
$\widetilde{\Phi}(x)=\max\{x\sigma-\Phi(\sigma)\colon \sigma\in[\sigma_0,0)\}$ for all $x\in\mathbb{R}$, and $\Delta_\Phi(\lambda)=\varlimsup_{n\to\infty}( -\ln n/\widetilde{\Phi}(\lambda_n))$, then:
(a) for each Dirichlet series $F\in\mathcal{D}_0(\lambda)$ we have
$$
R^*_{\alpha,\beta,\gamma}(F)=\varlimsup_{n\to +\infty}\left(\frac{\ln^+|a_n(F)|}{-\widetilde{\Phi }(\lambda_n)}\right)^\rho;
$$
(b) if $\tau(\lambda)>0$, then for each $p_0\in[0,+\infty]$ and any positive function $\Psi$ on $[c,0)$ there exists a Dirichlet series $F\in\mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F)=p_0$ and $M(\sigma,F)\ge \Psi(\sigma)$ for all $\sigma\in[\sigma_0,0)$;
(c) if $\tau(\lambda)=0$, then $(R_{\alpha,\beta,\gamma} (F))^{1/\rho}\le (R^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda)$ for every Dirichlet series\linebreak $F\in\mathcal{D}_0(\lambda)$;
(d) if $\tau(\lambda)=0$, then for each $p_0\in[0,+\infty]$ there exists a Dirichlet series $F\in\mathcal{D}_0(\lambda)$ such that $R^*_{\alpha,\beta,\gamma}(F)=p_0$ and $(R_{\alpha,\beta,\gamma}(F))^{1/\rho}=(R ^*_{\alpha,\beta,\gamma}(F))^{1/\rho}+\Delta_\Phi(\lambda)$.
References
E. Seneta, Regularly varying functions, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), №2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187
P.V. Filevych, O.B. Hrybel, The growth of the maximal term of Dirichlet series, Carpathian Math. Publ., 10 (2018), №1, 79–81. https://doi: 10.15330/cmp.10.1.79-81
T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), №2, 241–257. https://doi.org/10.1070/SM8644
Yu.M. Hal’, M.M. Sheremeta, On the growth of analytic in a half-plane functions represented by Dirichlet series, Dokl. AN UkrSSR. Ser. A., (1978), №12, 1065–1067. (in Russian)
M.M. Sheremeta, On the maximum of the modulus and the maximal term of Dirichlet series, Math. Notes, 73 (2003), №3–4, 402–407. https://doi.org/10.1023/A:1023222229539
O.M. Mulyava, M.M. Sheremeta, A remark to the growth of positive functions and its application to Dirichlet series, Mat. Stud., 44 (2015), №2, 161–170. https://doi.org/10.15330/ms.44.2.161-170
L.V. Kulyavetc’, O.M. Mulyava, On the growth of a class of Dirichlet Series absolutely convergent in half-plane, Carpathian Math. Publ., 9 (2017), №1, 63–71. https://doi.org/10.15330/cmp.9.1.63-71
M.M. Sheremeta, O.M. Mulyava, The Hadamard compositions of Dirichlet series absolutely converging in half-plane, Mat. Stud., 53 (2020), №1, 13–28. https://doi.org/10.30970/ms.53.1.13-28
O.M. Mulyava, On the relative growth of Dirichlet series with zero abscissa of absolute convergence, Mat. Stud., 55 (2021), №1, 44–50. https://doi.org/10.30970/ms.55.1.44-50
A.I. Bandura, O.M. Mulyava, M.M. Sheremeta, On Dirichlet series similar to Hadamard compositions in half-plane, Carpathian Math. Publ., 15 (2023), №1, 180–195. https://doi.org/10.15330/cmp.15.1.180-195
P.V. Filevych, O.B. Hrybel, Global estimates for sums of absolutely convergent Dirichlet series in a halfplane, Mat. Stud., 59 (2023), №1, 60–67. https://doi.org/10.30970/ms.59.1.60-67
P.V. Filevych, O.B. Hrybel, On regular variation of entire Dirichlet series, Mat. Stud., 58 (2022), №2, 174–181. https://doi.org/10.30970/ms.58.2.174-181
Copyright (c) 2024 P. V. Filevych, O. B. Hrybel
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.