An operator Riccati equation and reflectionless Schrodinger operators
Abstract
In this paper, we study a connection between the operator Riccati equation
$\displaystyle
S'(x)=KS(x)+S(x)K-2S(x)KS(x), \quad x\in\mathbb{R},
$
and the set of reflectionless Schr\"odinger operators with operator-valued potentials.
Here $K\in \mathcal{B}(H)$, $K>0$ and $S:\mathbb{R}\to \mathcal{B}(H)$, where $\mathcal{B}(H)$ is the Banach algebra of all linear continuous operators acting in a separable Hilbert space $H$. Let $\mathscr{S}^+(K)$ be the set of all solutions $S$ of the Riccati equation satisfying the conditions $0< S(0)< I $ and $S'(0)\ge 0$, with $I$ being the identity operator in $H$. We show that every solution $S\in \mathscr{S}^+(K)$ generates a reflectionless Schr\"odinger operator with some potential $q$ that is an analytic function in the strip
$\displaystyle
\Pi_K:=\left\{z=x+iy \mid x,y\in\mathbb{R}, \,\, |y|<\tfrac{\pi}{2\|K\|} \right\};
$
moreover,
$\displaystyle \|q(x+iy)\|\le2\|K\|^2\cos^{-2}(y\|K\|), \quad (x+iy)\in\Pi_K .
$
References
V.A. Marchenko, The Cauchy problem for the KdV equation with nondecreasing initial data, in What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318.
I. Hur, M. McBride, C. Remling, The Marchenko representation of reflectionless Jacobi and Schrodinger operators, Trans. AMS, 368 (2016), №2, 1251–1270.
F. Gesztesy, W. Karwowski, Z. Zhao, Limits of soliton solutions, Duke Math. J., 68 (1992), №1, 101–150.
S. Kotani, KdV flow on generalized reflectionless potentials, Zh. Mat. Fiz. Anal. Geom., 4 (2008), №4, 490–528.
R. Hryniv, B. Melnyk, Ya. Mykytyuk, Inverse scattering for reflectionless Schr¨odinger operators with integrable potentials and generalized soliton solutions for the KdV equation, Ann. Henri Poincare, 22 (2021), 487–527.
Ya.V. Mykytyuk, N.S. Sushchyk, Reflectionless Schrodinger operators and Marchenko parametrization, Mat. Stud., 61 (2024), №1, 69–73. https://doi.org/10.30970/ms.61.1.79-83
F. Gesztesy, R.Weikard, M. Zinchenko, On spectral theory for Schrodinger operators with operator-valued potentials, J. Diff. Equat., 255 (2013), №7, 1784–1827.
Ya.V. Mykytyuk, N.S. Sushchyk, The strip of analyticity of reflectionless potentials, Mat. Stud., 57 (2022), №2, 186–191. https://doi.org/10.30970/ms.57.2.186-191
Copyright (c) 2024 Ya. V. Mykytyuk, N. S. Sushchyk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.