On the interpolation in some classes of holomorphic in the unit disk functions
Abstract
There is considered an interpolation problem $f(\lambda_n )=b_n$ in the class of holomorphic in the unit disk $U(0;1)=\{z\in\mathbb{C}\colon |z|<1\}$
functions of finite $\eta$-type, i.e such that
$\displaystyle (\exists A>0)(\forall z\in U(0;1))\colon \quad |f(z)|\leq\exp\Big(A\eta\Big(\frac A{1-|z|}\Big)\Big),$
where $\eta\colon [1;+\infty)\to [0;+\infty)$ is an increasing convex function with respect to $\ln{t}$ and $\ln{t}=o\left(\eta ( t)\right)$ $(t\to+\infty)$.
There were received sufficient conditions of the interpolation problem solvability in terms of the counting functions
$\displaystyle N(r)=\int\nolimits_{0}^{r}\frac{\left(n(t)-1\right)^+}{t}dt$ and $\displaystyle N_{\lambda_n} (r)=\int\nolimits_{0}^{r}{\frac{{{(n}_{\lambda_n}\left(t\right)-1)}^+}{t}dt}$.
Earlier, in 2004, necessary conditions were obtained (Ukr. Math. J., {\bf 56} (2004), \No 3) in these terms.
For the moderate growth of $f$ (when the majorant $\eta=\psi$ satisfies the condition $\psi\left(2x\right)=O\left(\psi\left(x\right)\right),\ x\rightarrow+\infty$) that problem was solved in J. Math. Anal. Appl., {\bf 414} (2014), \No 1.
In this paper, we remove any restrictions on the growth of $\eta$ and construct an interpolation function $f$ such that
$\displaystyle (\exists A'>0)(\forall z\in U(0;1))\colon \quad |{f}(z)|\leq\exp\Big(\frac{A'}{(1-|z|)^{3/2}}\eta\Big(\frac{A'}{1-|z|}\Big)\Big)$.
References
Vynnyts’kyi B.V., Sheparovych I.B. The interpolation sequences of the analytic functions in the unit disk of finite η-type, Ukr. Math. J., 56 (2004), №3, 425–430.
I. Chyzhykov, I. Sheparovych, Interpolation of analytics functions of moderate growth in the unit disk and zeros of solutions of a linear differential equation, J. Math. Anal. Appl., 414 (2014), №1, 319–333. https://doi.org/10.1016/j.jmaa.2013.12.066
I.B. Sheparovych, Interpolation in some class of analytic functions in the unit disk, Mat. Stud., 13 (2001), №2, 165–172.
I.B. Sheparovych, On zeros of the holomorphic in the unit disk functions from the classes that determined by an arbitrary growth majorant, Bukovyn. Mat. Zh., 6 (2018), №1–2, 129–134. https://doi.org/10.31861/bmj2018.01.129
W. Beck, Efficient quotient representations of meromorphic functions in the disc. Thesis, University of Illinois (Urbana-Champaign), 1970.
I.B. Sheparovych, Some notices on zeros and poles of meromorphic functions in a unit disk from the classes defined by the arbitrary growth majorant, Bukovyn. Mat. Zh., 9 (2021), №2, 124–130. https://doi.org/10.31861/bmj2021.02.10
J. Miles, Quotient representations of meromorphic functions, J. d’Analese Math., 25 (1972), 371–388.
C.N. Linden, Integral logarithmic means for regular functions, Pacific J. of Math., 138 (1989), №1, 119–127.
P.L. Duren, Theory of Hp spaces, Academic press, NY and London, 1970, 258 p.
J. Clunie, On integral functions having prescribed asymptotic grows. I, Can. J. Math., 17 (1965), №3, 396–404.
G. Polya, G. Szego, Aufgaben und Lesatze aus der Analysis, Bd.II, Springer-Verlag, Berlin-Gottingen Heidelberg-New York, 1964.
L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921–930.
P. Jones, Carleson measures and the Fefferman-Stein decomposition of BMO(R), Ann. Math., 111 (1980), 197–208.
K. Seip, Beurling type density theorems in the unit disc, Invent. Math., 113 (1993), 21–39.
A. Hartmann, X. Massaneda, Interpolating sequences for holomorphic functions of restricted growth, Ill. J. Math., 46 (2002), №3, 929–945.
A. Borichev, R. Dhuez, K. Kellay, Sampling and interpolation in large Bergman and Fock space, J. Funct. Analysis, 242 (2007), 563–606.
Copyright (c) 2024 I. Sheparovych
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.