Isotropy group on some topological transformation group structures
Abstract
This paper explores the topological properties of irresolute topological groups, their quotient maps, and the role of topology in normal subgroups. It provides a detailed analysis\linebreak using examples and counterexamples. The study focuses on the essential features of irresolute topological groups and their quotient groups, for understanding the topological aspects of isotropy groups. For a trans\-for\-ma\-tion group $(\mathsf{H}, \mathsf{Y}, \psi)$ and a point $y \in \mathsf{Y},$ the set
\centerline{$\mathsf{H}_{y} = \{h \in \mathsf{H} \colon hy = y\}$}
\noi consisting of elements of $\mathsf{H}$ that fix $y$, is called the isotropy group at $y$.
The paper highlights the distinct topological characteristics of isotropy groups in transformation group structure. It demonstrates that if $(\mathsf{H}, \mathsf{Y}, \psi)$ is an Irr$^{*}$-topological transformation group, then $( \mathsf{H}/ \mathop{Ker} \psi, \mathsf{Y}, \overline{\psi})$ forms an effective Irr$^{*}$-topological transformation group. By investigating both irresolute topological groups and isotropy groups, the study provides a clear understanding of their topological features. This research improves our understanding of these groups by offering clear examples and counterexamples, leading to a thorough conclusion about their different topological features.
References
E. Bohn, Semi-topological groups, American Mathematical Monthly, 72 (1965), №9, 996–998. https://doi.org/10.2307/2313342.
M.S. Bosan, Moiz ud Din Khan, Ljubiˇsa D.R. Koˇcinac, On s-topological groups, Mathematica Moravica, 18 (2014), №2, 35–44. https://doi.org/10.5937/MatMor1402035B.
G.E. Bredon, Introduction to compact transformation groups, Academic press, 1972.
P. Das, Note on semi connectedness, Indian J. Mech. Math., 12 (1974), 31–34.
C. Dorsett, Semi compactness, semi separation axioms, and product spaces, Bull. Malaysian Math. Soc. (2), 4 (1981), №1, 21–28.
S. Gene Crossley, S.K. Hildebrand, Semi-topological properties, Fundamenta Mathematicae, 74 (1972), №3, 233–254.
A.M. Gleason, R.S. Palais, On a class of transformation groups, American Journal of Mathematics, 79 (1957), №3, 631–648, https://doi.org/10.2307/2372567.
K. Dhanasekar, V. Visalakshi, On some topological structures of transformation groups, IAENG International Journal of Applied Mathematics, 54 (2024), №5, 887–893. https://www.iaeng.org/IJAM/issues_v54/issue_5/IJAM_54_5_11.pdf.
N. Levine, Semi open sets and semi-continuity in topological spaces, The American mathematical monthly, 70 (1963), №1, 36–41. https://doi.org/10.2307/2312781.
S.N. Maheshwari, Some new separations axioms, Ann. Soc. Sci. Bruxelles, Ser. I, 89 (1975), 395–402.
Moiz ud Din Khan, Afra Siab, Ljubiˇsa D.R. Koˇcinac, Irresolute-topological groups, Mathematica Moravica, 19 (2015), №1, 73–80. https://doi.org/10.5937/MATMOR1501073K.
Moiz ud Din Khan, R. Noreen, M.S. Bosan, Semi-quotient mappings and spaces, Open Mathematics, 14 (2016), №1, 1014–1022. https://doi.org/10.1515/ math-2016-0093.
R. Noreen, M.S. Bosan, M.D. Khan, Semi connectedness in irresolute topological groups, Science International, 27 (2015), №6.
Piyu Li, Lei Mou, On quasitopological groups, Topology and its Applications, 161 (2014), 243–247. https://doi.org/10.1016/j.topol.2013.10.022.
C. Rajapandiyan, V. Visalakshi, S. Jafari, On a new type of topological transformation group, Asia Pacific Journal of Mathematics, 11 (2024), №5. https://doi.org/10.28924/APJM/11-5.
C. Rajapandiyan, V. Visalakshi, Fixed point set and equivariant map of a S-topological transformation group, International Journal of Analysis and Applications, 22 (2024). http://dx.doi.org/10.28924/2291-8639-22-2024-20.
M. Ram, On almost topological groups, Mathematica Moravica, 23 (2019), №1, 97–106. https://doi.org/10.5937/MatMor1901097R.
O.V. Ravsky, Paratopological groups I, Mat. Stud., 16(2001), №1, 37–48.
S. Jafari, P. Gnanachandra, A.M. Kumar, On p-topological groups, Mathematica Moravica, 25 (2021), №2, 13–27. https://doi.org/10.5937/MatMor2102013J.
J.P. Sarker, H. Dasgupta, Locally semi-connectedness in topological spaces, Indian J. Pure Appl. Math., 16 (1985), №12, 1488–1494.
M.H. Stone, Algebraic characterizations of special Boolean rings, Fundamenta Mathematicae, 29 (1937), №1, 223–303.
Copyright (c) 2024 D. Keerthana, V. Visalakshi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.