Monogenic free inverse semigroups and partial automorphisms of regular rooted trees
Abstract
For a one-to-one partial mapping on an infinite set, we present a criterion in terms of its cycle-chain decomposition that the inverse subsemigroup generated by this mapping is monogenic free inverse.
We also give a sufficient condition for a regular rooted tree partial automorphism to extend to a partial automorphism of another regular rooted tree so that the inverse semigroup gene\-ra\-ted by this extended partial automorphism is monogenic free inverse. The extension procedure we develop is then applied to $n$-ary adding machines.
References
K. Cvetko-Vah, D. Kokol Bukovˇsek, T. Koˇsir, G. Kudryavtseva, Y. Lavrenyuk, A. Oliynyk, Semitransitive subsemigroups of the symmetric inverse semigroups, Semigroup Forum, 78 (2009), №1, 138–147. https://doi.org/10.1007/s00233-008-9123-z
D. D’Angeli, E. Rodaro, J.P. W¨achter, On the structure theory of partial automaton semigroups, Semigroup Forum, 101 (2020), №1, 51–76. https://doi.org/10.1007/s00233-020-10114-5
O. Ganyushkin, V. Mazorchuk, Classical finite transformation semigroups, Springer-Verlag, 2009. https://doi.org/10.1007/978-1-84800-281-4
R. Grigorchuk, V. Nekrashevych, V. Sushchansky, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, 231 (2000), 134–214.
Y. Kochubinska, Combinatorics of partial wreath power of finite inverse symmetric semigroup ISd, Algebra Discrete Math., (2007), №1, 49–60.
E. Kochubinska, Spectral properties of partial automorphisms of a binary rooted tree, Algebra Discrete Math., 26 (2018), №2, 280–289.
E. Kochubinska, Spectrum of partial automorphisms of regular rooted tree, Semigroup Forum, 103 (2021), №2, 567–574. https://doi.org/10.1007/s00233-021-10219-5
J. Konieczny, Centralisers in the infinite symmetric inverse semigroup, Bull. Aust. Math. Soc., 87 (2013), №3, 462–479. https://doi.org/10.1017/S0004972712000779
S. Lipscomb, Symmetric inverse semigroups, American Mathematical Society, Providence, RI, 1996. https://doi.org/10.1090/surv/046
A. Oliynyk, On free semigroups of automaton transformations, Math. Notes, 63 (1998), №7, 215–2224. https://doi.org/10.1007/BF02308761
A. Oliynyk, V. Prokhorchuk, Amalgamated free product in terms of automata constructions, Comm. Algebra, 50 (2022), №2, 740–750. https://doi.org/10.1080/00927872.2021.196796
A. Oliynyk, V. Sushchansky, J. Slupik, Inverse semigroups of partial automaton permutations, Internat. J. Algebra Comput., 20 (2010), №7, 923–952. https://doi.org/10.1142/S0218196710005960
M. Petrich, Inverse semigroups, John Wiley & Sons, Inc., 1984.
J. Slupik, Classification of inverse semigroups generated by two-state partially defined invertible automata over the two-symbol alphabet, Algebra Discrete Math., (2006), №1, 67–80.
Copyright (c) 2024 E. Kochubinska, A. Oliynyk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.