Nonlocal hyperbolic Stokes system with variable exponent of nonlinearity

  • O. M. Buhrii Ivan Franko National University of Lviv https://orcid.org/0000-0002-1698-5559
  • O. T. Kholyavka Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NASU
  • T. M. Bokalo Ivan Franko National University of Lviv
Keywords: hyperbolic Stokes system;, weak solution;, variable exponent of nonlinearity;, nonlocal term.

Abstract

In this paper, we study the problem for a nonlinear hyperbolic Stokes system of the second order with an integral term.
Sufficient conditions for the uniqueness of the weak solution of this problem are found in a bounded domain. The nonlinear term of the system contains a variable exponent of nonlinearity, which is a function of spatial variables.
The problem is studied in ordinary Sobolev spaces and generalized Lebesgue spaces, which is quite natural in this case.

Author Biographies

O. M. Buhrii, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

O. T. Kholyavka, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NASU

Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics of NASU

T. M. Bokalo, Ivan Franko National University of Lviv

Ivan Franko National University of Lviv

References

R. Temam, Navier-Stokes equations: theory and numerical analysis. Noth-Holland Publishing Company, Amsterdam, New York, Oxford, 1979.

J.A. Langa, J. Real, J. Simon, Existence and regularity of the pressure for the stochastic Navier-Stokes equations, Applied Math. and Optim., 48 (2003), №3, 195–210.

H.B. de Oliveira, Existence of weak solutions for the generalized Navier-Stokes equations with damping, Nonlinear Differ. Equ. Appl., 20 (2013), 797–824.

R. Racke, J. Saal, Global solutions to hyperbolic Navier-Stokes equations, Konstanzer Schriften in Mathematik, №268, 2010.

R. Racke, J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness, EECT, 1 (2012), №1, 195–215.

R. Racke, J. Saal, Hyperbolic Navier-Stokes equations II: Global existence of small solutions, EECT, 1 (2012), №1, 217–234.

M. R˙uˇziˇcka, Electrorheological fluids: Modeling and mathematical theory, in: Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.

E. Acerbi, G. Mingione, G.A. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Annales de l’Institut Henri Poincare, C, 21 (2004), №1, 25–60.

O.M. Buhrii, Visco-plastic, Newtonian, and dilatant fluids: Stokes equations with variable exponent of nonlinearity, Mat. Stud., 49 (2018), №2, 165–180.

O. Buhrii, M. Khoma, On initial-boundary value problem for nonlinear integro-differential Stokes system, Visn. Lviv Univ. (Herald of Lviv University). Ser. Mech.-Math., 85 (2018), 107–119.

O. Buhrii, N. Buhrii, Integro-differential systems with variable exponents of nonlinearity, Open Math., 15 (2017), 859–883.

O. Buhrii, N. Buhrii, Nonlocal in time problem for anisotropic parabolic equations with variable exponents of nonlinearities, J. Math. Anal. Appl., 473 (2019), 695–711.

T. Kobayashi, T. Kubo, K. Nakamura, On a local energy decay estimate of solutions to the hyperbolic type Stokes equations, J. Diff. Eq., 264 (2018), №10, 6061–6081.

O.M. Buhrii, O.T. Kholyavka, P.Ya. Pukach, M.I. Vovk, Cauchy problem for hyperbolic equations of third order with variable exponent of nonlinearity, Carpathian Math. Publ., 12 (2020), №2, 419–433.

O. Kovacik, J. Rakosnık, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J., 41 (1991), №116, 592–618.

X.-L. Fan, D. Zhao, On the spaces$L^{p(x)}(Omega)$ and $W^{m;p(x)}(Omega)$, J. Math. Anal. Appl., 263 (2001), №2, 424–446.

T.M. Bokalo, O.M. Buhrii, Doubly nonlinear parabolic equations with variable exponents of nonlinearity, Ukrainian Math. J., 63 (2011), №5, 709–728.

O.M. Buhrii, On the existence of mild solutions of the initial-boundary-value problems for the Petrovskiitype semilinear parabolic systems with variable exponents of nonlinearity, Ukrainian Math. J., 66 (2014), №4, 487–498.

M. Bokalo, O. Buhrii, N. Hryadil, Initial-boundary value problems for nonlinear elliptic-parabolic equationswith variable exponents of nonlinearity in unbounded domains without conditions at infinity, Nonlinear Analysis, 192 (2020), 111700.

M. Bokalo, Initial-boundary value problems for anisotropic parabolic equations with variable exponents of the nonlinearity in unbounded domains with conditions at infinity, J. of Optim. Diff. Equat. Appl., 30 (2022), №1, 98–121.

C. Cataneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948/49), 3–21.

Published
2023-12-18
How to Cite
Buhrii, O. M., Kholyavka, O. T., & Bokalo, T. M. (2023). Nonlocal hyperbolic Stokes system with variable exponent of nonlinearity. Matematychni Studii, 60(2), 173-179. https://doi.org/10.30970/ms.60.2.173-179
Section
Articles