Wiman’s type inequality for entire multiple Dirichlet series with arbitrary complex exponents
Abstract
It is proved analogues of the classical Wiman's inequality} for the class $\mathcal{D}$ of absolutely convergents in the whole complex plane $\mathbb{C}^p$ (entire) Dirichlet series of the form $\displaystyle F(z)=\sum\limits_{\|n\|=0}^{+\infty} a_ne^{(z,\lambda_n)}$ with such a sequence of exponents $(\lambda_n)$ that $\{\lambda_n\colon n\in\mathbb{Z}^p\}\subset \mathbb{C}^p$ and $\lambda_n\not=\lambda_m$ for all $n\not= m$. For $F\in\mathcal{D}$ and $z\in\mathbb{C}^p\setminus\{0\}$ we denote $\mathfrak{M}(z,F):=\sum\limits_{\|n\|=0}^{+\infty}|a_n|e^{\Re(z,\lambda_n)},\quad\mu(z,F):=\sup\{|a_n|e^{\mathop{\rm Re}(z,\lambda_n)}\colon n\in\mathbb{Z}^ p_+\},$ $(m_k)_{k\geq 0}$ is $(\mu_{k})_{k\geq 0}$ the sequence $(-\ln|a_{n}|)_{n\in\mathbb{Z}^p_+}$ arranged by non-decreasing. The main result of the paper: Let $F\in \mathcal{D}.$ If $(\exists \alpha > 0)\colon$ $\int\nolimits_{t_0}^{+\infty}t^{-2}{(n_1(t))^{\alpha}}dt<+\infty,$ $n_1(t)\overset{def}=\sum\nolimits_{\mu_n\leq t} 1,\quad t_0>0,$ then there exists a set $E\subset\gamma_{+}(F),$\ such that $\tau_{2p}(E\cap\gamma_{+}(F))=\int_{E\cap\gamma_{+}(F)}|z|^{-2p}dxdy\leq C_p, z=x+iy\in\mathbb{C}^p,$ and relation $\mathfrak{M}(z,F)= o(\mu(z,F)\ln^{1/\alpha} \mu(z,F))$ holds as $z\to \infty$\ $(z\in \gamma_R\setminus E)$ for each $R>0$, where $\gamma_R=\Big\{z\in\mathbb{C}^p\setminus\{0\}\colon\ K_F(z)\leq R \Big\},\quad K_F(z)=\sup\Big\{\frac1{\Phi_z( t)}\int^{ t}_0 \frac {{\Phi_z}(u)}{u} du\colon\ t \geq t_0\Big\},$ $\gamma(F)=\{z\in\mathbb{C}\colon \ \lim\limits_{t\to +\infty}\Phi_z(t)=+\infty\},\quad \gamma_+(F)=\mathop{\cup}_{R>0}\gamma_R$, $\Phi_z(t)=\frac1{t}\ln\mu(tz,F)$. In general, under the specified conditions, the obtained inequality is exact.References
G. Valiron, Fonctions analytiques. Paris: Press. Univer. de France, 1954.
H. Wittich, Neuere Untersuchungen über eindeutige analytische Funktionen. Berlin-Göttingen-Heidelberg: Springer, 1955, 164 s.
A. A. Goldberg, B. Ja. Levin, I. V. Ostrovski, Entire and meromorphic functions, Itogi nauky i techn., VINITI, 1990, V.85, 5–186. (in Russian)
O.B. Skaskiv, P.V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12 (1999), No1, 31–36. (in Ukrainian)
M. N. Sheremeta, The Wiman-Valiron method for entire functions given by Dirichlet series, Dokl. Akad Nauk SSSR, 240 (1978), no.5,1036–1039. (in Russian) English transl. in Sov. Math., Dokl., 19 (1978), 726–730.
O. B. Skaskiv, Random gap series and Wiman’s inequality, Mat. Stud., 30 (2008), no 1, 101–106. (in Ukrainian)
O. B. Skaskiv, On the classical Wiman inequality for entire Dirichlet series, Visn. L’viv. Univ, Ser mekh.-mat., 54 (1999), 180–182. (in Ukrainian)
M. N. Sheremeta, On a property of the entire Dirichlet series with decreasing coefficients, Ukr. Mat. Zhurn., 45 (1993), no.6, 843–853. (in Ukrainian) English transl. in Ukr. Math. J., 45 (1993), no.6, 929–942.
O. B. Skaskiv, On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents, Mat. zametki, 56 (1994), no.5, 117–128. (in Russian) English transl. in Math. Not., 56 (1994), no. 5, 1177–1184.
O. B. Skaskiv, Ya. Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series with monotonous coefficients, Mat. Stud., 31 (2009), no.1, 7–46.
O. B. Skaskiv, Ya. Z. Stasyuk, On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane// Carpat. Mat. Publ. – 2009. – V.1, No1. – P. 100–106.
I. Ovchar, O. Skaskiv, On the Borel type theorem for entire Dirichlet series with nonmonotonous exponents, Visn. L’viv. Univ, ser. mekh.-mat., 72 (2010), 232–242. (in Ukrainian)
A. O. Kuryliak, I. Ye. Ovchar, O. B. Skaskiv, Wiman type inequalities for entire Dirichlet series with arbitrary exponents, Mat. Stud., 40 (2013), no.1, 108–112.
Skaskiv O.B. On certain relations between the maximum modulus and the maximal term of an entire Dirichlet series, Math. Notes. – 1999. – V.66, No2. – P. 223–232. Transl. from Mat. Zametky. – 1999.V.66, No2. – P. 282–292.
M. R. Lutsyshyn, On the maximal term of the entire Dirichlet series with complex exponents and monotonic coefficients, Visn. L’viv. Univ, ser. mekh.-mat., 51 (1998), 33–36. (in Ukrainian)
Copyright (c) 2023 A.O. Kuryliak
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.