Hankel and Toeplitz determinants for a subclass of analytic functions
Abstract
Let the function $f\left( z \right) =z+\sum_{k=2}^{\infty}a{_{k}}z {^{k}}\in A$ be locally univalent for $z \in \mathbb{D}%
:=\{z \in \mathbb{C}:{|}z {|}<1\}$ and $0\leq\alpha<1$.
Then, $f$\textit{\ }$\in $ $M(\alpha )$ if and only if
\begin{equation*}
\Re\Big( \left( 1-z ^{2}\right) \frac{f(z )}{z }\Big) >\alpha,\quad
z \in \mathbb{D}.
\end{equation*}%
Due to their geometrical characteristics, this class has a significant
impact on the theory of geometric functions. In the article we obtain sharp bounds for the second Hankel determinant
\begin{equation*}
\left\vert H_{2}\left( 2\right) \left( f\right) \right\vert =\left\vert
a_{2}a_{4}-{a_{3}^{2}}\right\vert
\end{equation*}
and some Toeplitz determinants
\begin{equation*}
\left\vert {T}_{3}\left( 1\right) \left( f\right) \right\vert =\left\vert 1-2%
{a_{2}^{2}}+2{a_{2}^{2}}a_{3}-{a_{3}^{2}}\right\vert,\ \
\left\vert {T}_{3}\left( 2\right) \left( f\right) \right\vert =\left\vert {%
a_{2}^{3}}-2a_{2}{a_{3}^{2}}+2{a_{3}^{2}}a_{4}-a_{2}{a_{4}^{2}}\right\vert
\end{equation*}
of a subclass of analytic functions $M(\alpha )$ in the open unit disk $%
\mathbb{D}$.
References
M.A. Firoz, D.K. Thomas, V. Allu, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264.
V. Allu, A. Lecko, D.K. Thomas, Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain close-to-convex functions, Mediterr. J. Math., 19 (2022), 22.
K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory Appl., 6 (2010), 1–7.
D. Bansal, S. Maharana, J.K. Prajpat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139–1148.
P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.
I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379.
A.W. Goodman, Univalent functions, Mariner, Tampa, 1983.
P. Henrici, Applied and computational complex analysis, Wiley: New York, NY, USA, V.1, 1974.
A.S. Householder, The numerical treatment of a single nonlinear equation, McGraw Hill: New York, NY, USA, 1970.
A. Janteng, S. Halim, M. Darus, Hankel determinants for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625.
R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc., 87 (1983), 251–257.
D.K. Thomas, N. Tuneski, V. Allu, Univalent functions: a primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018.
O. Toeplitz, Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veranderlichen, Mathematischphysikalische, Klasse, Nachr. der Kgl. Gessellschaft der Wissenschaften zu Gottingen, (1907), 110–115.
K. Ye, L.H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), 577–598.
Copyright (c) 2023 M. Buyankara, M. Çağlar
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.