Hankel and Toeplitz determinants for a subclass of analytic functions

  • M. Buyankara Bingöl University
  • M. Çağlar Erzurum Technical University
Keywords: analytic functions;, univalent functions;, Hankel and Toeplitz determinants

Abstract

Let the function $f\left( z \right) =z+\sum_{k=2}^{\infty}a{_{k}}z {^{k}}\in A$ be locally univalent for $z \in \mathbb{D}%
:=\{z \in \mathbb{C}:{|}z {|}<1\}$ and $0\leq\alpha<1$.
Then, $f$\textit{\ }$\in $ $M(\alpha )$ if and only if
\begin{equation*}
\Re\Big( \left( 1-z ^{2}\right) \frac{f(z )}{z }\Big) >\alpha,\quad
z \in \mathbb{D}.
\end{equation*}%
Due to their geometrical characteristics, this class has a significant
impact on the theory of geometric functions. In the article we obtain sharp bounds for the second Hankel determinant
\begin{equation*}
\left\vert H_{2}\left( 2\right) \left( f\right) \right\vert =\left\vert
a_{2}a_{4}-{a_{3}^{2}}\right\vert
\end{equation*}
and some Toeplitz determinants
\begin{equation*}
\left\vert {T}_{3}\left( 1\right) \left( f\right) \right\vert =\left\vert 1-2%
{a_{2}^{2}}+2{a_{2}^{2}}a_{3}-{a_{3}^{2}}\right\vert,\ \
\left\vert {T}_{3}\left( 2\right) \left( f\right) \right\vert =\left\vert {%
a_{2}^{3}}-2a_{2}{a_{3}^{2}}+2{a_{3}^{2}}a_{4}-a_{2}{a_{4}^{2}}\right\vert
\end{equation*}
of a subclass of analytic functions $M(\alpha )$ in the open unit disk $%
\mathbb{D}$.

Author Biographies

M. Buyankara, Bingöl University

Vocational School of Social Sciences, Bingöl University

Bingöl, Turkiye

M. Çağlar, Erzurum Technical University

Department of Mathematics, Faculty of Science

Erzurum Technical University

Erzurum, Turkiye

References

M.A. Firoz, D.K. Thomas, V. Allu, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264.

V. Allu, A. Lecko, D.K. Thomas, Hankel, Toeplitz, and Hermitian-Toeplitz determinants for certain close-to-convex functions, Mediterr. J. Math., 19 (2022), 22.

K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory Appl., 6 (2010), 1–7.

D. Bansal, S. Maharana, J.K. Prajpat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139–1148.

P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.

I. Efraimidis, A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379.

A.W. Goodman, Univalent functions, Mariner, Tampa, 1983.

P. Henrici, Applied and computational complex analysis, Wiley: New York, NY, USA, V.1, 1974.

A.S. Householder, The numerical treatment of a single nonlinear equation, McGraw Hill: New York, NY, USA, 1970.

A. Janteng, S. Halim, M. Darus, Hankel determinants for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625.

R.J. Libera, E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc., 87 (1983), 251–257.

D.K. Thomas, N. Tuneski, V. Allu, Univalent functions: a primer, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, Boston, 2018.

O. Toeplitz, Zur Transformation der Scharen bilinearer Formen von unendlichvielen Veranderlichen, Mathematischphysikalische, Klasse, Nachr. der Kgl. Gessellschaft der Wissenschaften zu Gottingen, (1907), 110–115.

K. Ye, L.H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math., 16 (2016), 577–598.

Published
2023-12-18
How to Cite
Buyankara, M., & Çağlar, M. (2023). Hankel and Toeplitz determinants for a subclass of analytic functions. Matematychni Studii, 60(2), 132-137. https://doi.org/10.30970/ms.60.2.132-137
Section
Articles