Symmetric polynomials on the Cartesian power of the real Banach space $L_\infty[0,1]$
Abstract
We construct an algebraic basis of the algebra of symmetric (invariant under composition of the variable with any measure preserving bijection of $[0,1]$) continuous polynomials on the $n$th Cartesian power of the real Banach
space $L_^{(\mathbb{R})}\infty[0,1]$ of Lebesgue measurable essentially bounded real valued functions on $[0,1].$ Also we describe the spectrum of the Fr\'{e}chet algebra $A_s(L_^{(\mathbb{R})}\infty[0,1])$ of symmetric real-valued functions on the space $L_^{(\mathbb{R})}\infty[0,1]$, which is the completion of the algebra of symmetric continuous real-valued polynomials on $L_^{(\mathbb{R})}\infty[0,1]$ with respect to the family of norms of uniform convergence of complexifications of polynomials. We show that $A_s(L_^{(\mathbb{R})}\infty[0,1])$ contains not only analytic functions. Results of the paper can be used for investigations of algebras of symmetric functions on the $n$th Cartesian power of the Banach space $L_^{(\mathbb{R})}\infty[0,1]$.
References
M. Boiso, P. Hajek, Analytic approximations of uniformly continuous functions in real Banach spaces, Journal of Mathematical Analysis and Applications, 256 (2001), 80-98. doi:10.1006jmaa.2000.7291.
P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on $L_infty$, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 147 (2017), №4, 743-761. doi:10.1017/S0308210516000287.
P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, Symmetric and finitely symmetric polynomials on the spaces $ell_infty$ and $L_infty[0,+infty)$, Mathematische Nachrichten, 291 (2018), №11-12, 1712-1726. doi:10.1002/mana.201700314.
P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, Analytic structure on the spectrum of the algebra of symmetric analytic functions on $L_infty$, RACSAM, 114 (2020), Article number 56.doi:10.1007/s13398-020-00791-w.
M. Gonz'{a}lez, R. Gonzalo, J. A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. London Math. Soc., 59 (1999), №2, 681-697. doi:10.1112/S0024610799007164.
V. Kravtsiv, Algebraic basis of the algebra of block-symmetric polynomials on $ell_1oplus ell_infty$, Carpathian Math. Publ., 11 (2019), №1, 89-95.
doi:10.15330/cmp.11.1.89-95.
V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on $ell_p(mathbb{C}^n)$, Journal of Function Spaces, 2017 (2017), Article~ID 4947925, 8 p. doi:10.1155/2017/4947925.
J. Mujica, Complex Analysis in Banach Spaces, North Holland, 1986.
A. S. Nemirovskii, S. M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR Sbornik, 21 (1973), №2, 255-277. doi:10.1070/SM1973v021n02ABEH002016.
T. Vasylyshyn, Point-evaluation functionals on algebras of symmetric functions on $(L_infty)^2$, Carpathian Math. Publ., 11 (2019), №2, 493-501. doi:10.15330/cmp.11.2.493-501.
T. Vasylyshyn, Symmetric polynomials on $(L_p)^n$, European Journal of Math., 6 (2020), №1, 164-178. doi:10.1007/s40879-018-0268-3.
Vasylyshyn T.V. The algebra of symmetric polynomials on $(L_infty)^n$, Mat. Stud., 52 (2019), №1, 71-85. doi:10.30970/ms.52.1.71-85
T. Vasylyshyn, A. Zagorodnyuk, Continuous symmetric 3-homogeneous polynomials on spaces of Lebesgue measurable essentially bounded functions, Methods of Functional Analysis and Topology, 24 (2018), №4, 381-398.
Copyright (c) 2020 T. Vasylyshyn, A. Zagorodnyuk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.