Global estimates for sums of absolutely convergent Dirichlet series in a half-plane

  • P.V. Filevych Lviv Politechnic National University, Lviv
  • O.B. Hrybel School of Mathematics, University of Bristol Bristol, United Kingdom Faculty of Mathematics and Computer Science Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine
Keywords: Dirichlet series; abscissa of absolute convergence; maximal term; Young-conjugate function.

Abstract

Let $(\lambda_n)_{n=0}^{+\infty}$ be a nonnegative sequence increasing to $+\infty$, $F(s)=\sum_{n=0}^{+\infty} a_ne^{s\lambda_n}$ be an absolutely convergent Dirichlet series in the half-plane $\{s\in\mathbb{C}\colon \operatorname{Re} s<0\}$, and let, for every $\sigma<0$, $\mathfrak{M}(\sigma,F)=\sum_{n=0}^{+\infty} |a_n|e^{\sigma\lambda_n}$.

Suppose that $\Phi\colon (-\infty,0)\to\overline{\mathbb{R}}$ is a function, and let $\widetilde{\Phi}(x)$ be the Young-conjugate function of $\Phi(\sigma)$, i.e.
$\widetilde{\Phi}(x)=\sup\{x\sigma-\alpha(\sigma)\colon \sigma<0\}$ for all $x\in\mathbb{R}$.
In the article, the following two statements are proved:

(i) There exist constants $\theta\in(0,1)$ and $C\in\mathbb{R}$ such that
$\ln\mathfrak{M}(\sigma,F)\le\Phi(\theta\sigma)+C$ for all $\sigma<0$ if and only if there exist constants $\delta\in(0, 1)$ and $c\in\mathbb{R}$ such that $\ln\sum_{m=0}^n|a_m|\le-\widetilde{\Phi}(\lambda_n/\delta)+c$ for all integers $n\ge0$ (Theorem 2);

(ii) For every $\theta\in(0,1)$ there exists a real constant $C=C(\delta)$ such that $\ln\mathfrak{M}(\sigma,F)\le\Phi( \theta\sigma)+C$ for all $\sigma<0$ if and only if for every $\delta\in(0,1)$ there exists a real constant $c=c(\delta)$ such that $\ln\sum_{m=0}^n|a_m|\le-\widetilde{\Phi}(\lambda_n/\delta)+c$ for all integers $n\ge0$ (Theorem 3).

(iii) Let $\Phi$ be a continuous positive increasing function on $\mathbb{R}$ such that $\Phi(\sigma)/\sigma\to+\infty$, $\sigma\to+ \infty$ and $F$ be a entire Dirichlet series.

For every $q>1$ there exists a constant $C=C(q)\in\mathbb{R}$ such that $\ln\mathfrak{M}(\sigma,F)\le \Phi(q\sigma)+C,\quad \sigma\in\mathbb{R},$ holds if and only if for every $\delta \in(0,1)$ there exist constants $c=c(\delta)\in\mathbb{R}$ and $n_0=n_0(\delta)\in\mathbb{N}_0$ such that $\ln \sum_{m=n}^{+\infty}|a_m|\le-\widetilde{\Phi}(\delta\lambda_n)+c,\quad n\ge n_0$ Theorem 5.

These results are analogous to some results previously obtained by M.M. Sheremeta for entire Dirichlet series.

References

S. Mandelbrojt, Dirichlet series: principles and methods, Dordrecht, D. Reidel Publishing Company, 1972.

T.Ya. Hlova, P.V. Filevych, Generalized types of the growth of Dirichlet series, Carpathian Math. Publ., 7 (2015), No2, 172–187. https://doi.org/10.15330/cmp.7.2.172-187

M.M. Sheremeta, On the growth of an entire Dirichlet series, Ukr. Math. J., 51 (1999), No8, 1296–1302. https://doi.org/10.1007/BF02592520

O.M. Mulyava, P.V. Filevych. On the growth of an entire Dirichlet series with nonnegative coefficients, Visnyk Lviv Univ. Ser. Mech. Math., 62 (2003), No6, 89–94. (in Ukrainian)

T.Ya. Hlova, P.V. Filevych, Paley effect for entire Dirichlet series, Ukr. Math. J., 67 (2015), No6, 838–852. https://doi.org/10.1007/s11253-015-1117-x

P.V. Filevych, O.B. Hrybel. On regular variation of entire Dirichlet series, Mat. Stud., 58 (2022), No2, 174–181. https://doi.org/10.30970/ms.58.2.174-181

M.M. Sheremeta, Entire Dirichlet Series, Kyiv, ISDO, 1993. (in Ukrainian)

O.B. Skaskiv, Behavior of the maximum term of a Dirichlet series that defines an entire function, Math. Notes, 37 (1985), No1, 24–28. https://doi.org/10.1007/BF01652509

P.V. Filevych, M.M. Sheremeta, Regularly increasing entire Dirichlet series, Math. Notes, 74 (2003), No1, 110–122. https://doi.org/10.1023/A:1025027418525

T.Ya. Hlova, P.V. Filevych, The growth of entire Dirichlet series in terms of generalized orders, Sb. Math., 209 (2018), No2, 241–257. https://doi.org/10.1070/SM8644

Published
2023-03-29
How to Cite
Filevych, P., & Hrybel, O. (2023). Global estimates for sums of absolutely convergent Dirichlet series in a half-plane. Matematychni Studii, 59(1), 60-67. https://doi.org/10.30970/ms.59.1.60-67
Section
Articles