On a semitopological semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ when a family $\mathscr{F}$ consists of inductive non-empty subsets of $\omega$

  • O. V. Gutik Ivan Franko National University of Lviv, Lviv
  • M. S. Mykhalenych Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv Lviv, Ukraine
Keywords: semitopological semigroup; topological semigroup; bicyclic monoid; inverse semigroup; closure; compact; locally compact; discrete

Abstract

Let $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ be the bicyclic semigroup extension for the family $\mathscr{F}$ of ${\omega}$-closed subsets of $\omega$ which is introduced in \cite{Gutik-Mykhalenych=2020}.
We study topologizations of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F}$ of inductive ${\omega}$-closed subsets of $\omega$. We generalize Eberhart-Selden and Bertman-West results about topologizations of the bicyclic semigroup \cite{Bertman-West-1976, Eberhart-Selden=1969} and show that every Hausdorff shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is discrete and if a Hausdorff semitopological semigroup $S$ contains $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ as a proper dense subsemigroup then $S\setminus\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is an ideal of $S$. Also, we prove the following dichotomy: every Hausdorff locally compact shift-continuous topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is either compact or discrete. As a consequence of the last result we obtain that every Hausdorff locally compact semigroup topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is discrete and every Hausdorff locally compact shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}\sqcup I$ with an adjoined compact ideal $I$ is either compact or the ideal $I$ is open, which extent many results about locally compact topologizations of some classes of semigroups onto extensions of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$.

Author Biographies

O. V. Gutik, Ivan Franko National University of Lviv, Lviv

Department of Mechanics and Mathematics,
Ivan Franko National University of Lviv, Lviv

M. S. Mykhalenych, Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv Lviv, Ukraine

Faculty of Mechanics and Mathematics
Ivan Franko National University of Lviv
Lviv, Ukraine

References

L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups. Trans. Amer. Math. Soc., 117 (1965), 521–529.

T. Banakh, S. Bardyla, I. Guran, O. Gutik, A. Ravsky, Positive answers for Koch’s problem in special cases, Topol. Algebra Appl., 8 (2020), 76–87.

S. Bardyla, Classifying locally compact semitopological polycyclic monoids, Mat. Visn. Nauk. Tov. Im. Shevchenka, 13 (2016), 21–28.

S. Bardyla, On locally compact semitopological graph inverse semigroups, Mat. Stud., 49 (2018), №1, 19–28.

S. Bardyla, On topological McAlister semigroups, J. Pure Appl. Algebra, 227 (2023), №4, 107274.

M.O. Bertman, T.T. West, Conditionally compact bicyclic semitopological semigroups, Proc. Roy. Irish Acad., A76 (1976), №21–23, 219–226.

J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, V.I, Marcel Dekker, Inc., New York and Basel, 1983.

J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, V.II, Marcel Dekker, Inc., New York and Basel, 1986.

I.Ya. Chuchman, O.V. Gutik, Topological monoids of almost monotone injective co-finite partial selfmaps of the set of positive integers, Carpathian Math. Publ., 2 (2010), №1, 119–132.

A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, V.I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

A.H. Clifford, G.B. Preston, The algebraic theory of semigroups, V.II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

C. Eberhart, J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc., 144 (1969), 115–126.

R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.

I. Guran, M. Kisil’, Pontryagin’s alternative for locally compact cancellative monoids, Visnyk Lviv Univ. Ser. Mech. Math., 77 (2012), 84–88. (in Ukrainian)

O. Gutik, On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visnyk L’viv Univ., Ser. Mech.-Math., 80 (2015), 33–41.

O. Gutik, On locally compact semitopological 0-bisimple inverse ω-semigroups, Topol. Algebra Appl., 6 (2018), 77–101.

O. Gutik, P. Khylynskyi, On a locally compact monoid of cofinite partial isometries of N with adjoined zero, Topol. Algebra Appl., 10 (2022), №1, 233–245.

O.V. Gutik, K.M. Maksymyk, On a semitopological extended bicyclic semigroup with adjoined zero, J. Math. Sci., 265 (2022), №3, 369–381.

O. Gutik, M. Mykhalenych, On some generalization of the bicyclic monoid, Visnyk Lviv. Univ. Ser. Mech.-Mat., 90 (2020), 5–19. (in Ukrainian)

O. Gutik, M. Mykhalenych, On group congruences on the semigroup $boldsymbol{B}_{omega}^{mathscr{F}}$ and its homomorphic retracts in the case when a family $mathscr{F}$ consists of inductive non-empty subsets of $omega$, Visnyk Lviv. Univ. Ser. Mech.-Mat., 91 (2021), 5–27. (in Ukrainian)

E. Hewitt, Compact monothetic semigroups, Duke Math. J., 23 (1956), №3, 447–457.

K.H. Hofmann, Topologische Halbgruppen mit dichter submonoger Untenhalbgruppe, Math. Zeit., 74 (1960), 232–276.

K.H. Hofmann, P.S. Mostert, Elements of compact semigroups, Columbus: Chas. E. Merrill Co., 1966.

R.J. Koch, On monothetic semigroups, Proc. Amer. Math. Soc., 8 (1957), №2, 397–401.

M. Lawson, Inverse semigroups. The theory of partial symmetries, Singapore: World Scientific, 1998.

K. Maksymyk, On locally compact groups with zero, Visn. Lviv Univ., Ser. Mekh.-Mat., 88 (2019), 51–58. (in Ukrainian)

T. Mokrytskyi, On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of $mathbb{N}^n$ with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat., 87 (2019), 37–45.

K. Numakura, On bicompact semigroups, Math. J. Okayama Univ., 1 (1952), 99–108.

M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.

W. Ruppert, Compact Semitopological semigroups: an intrinsic theory, Lect. Notes Math., V.1079, Springer, Berlin, 1984.

V.V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR, 84 (1952), 1119–1122. (in Russian)

A. Weil, L’integration dans les groupes lopologiques et ses applications, Actualites Scientifiques, V.869, Hermann, Paris, 1938.

E.G. Zelenyuk, On Pontryagin’s alternative for topological semigroups, Mat. Zametki, 44 (1988), №3, 402–403. (in Russian)

Ye. Zelenyuk, A locally compact noncompact monothetic semigroup with identity, Fund. Math., 245 (2019), №1, 101–107.

Ye. Zelenyuk, Larger locally compact monothetic semigroups, Semigroup Forum, 100 (2020), №2, 605–616.

Ye. Zelenyuk, Yu. Zelenyuk, When a locally compact monothetic semigroup is compact, J. Group Theory, 23 (2020), №6, 983–989.

Published
2023-03-28
How to Cite
Gutik, O. V., & Mykhalenych, M. S. (2023). On a semitopological semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ when a family $\mathscr{F}$ consists of inductive non-empty subsets of $\omega$. Matematychni Studii, 59(1), 20-28. https://doi.org/10.30970/ms.59.1.20-28
Section
Articles