Note on boundedness of the $L$-index in the direction of the composition of slice entire functions

  • V. P. Baksa Lviv Politechnic National University Lviv, Ukraine
  • A. I. Bandura Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine
  • T. M. Salo Lviv Polytechnic National University, Lviv, Ukraine
  • O. B. Skaskiv Ivan Franko National University of Lviv, Lviv, Ukraine
Keywords: bounded index;, bounded L-index in direction;, slice function;, holomorphic function;, bounded lindex;, directional derivative;, unit ball;, composition;, logarithmic derivative;, bounded value distribution

Abstract

We study a composition of two functions belonging to a class of slice holomorphic functions in the whole $n$-dimensional complex space.
The slice holomorphy in the space means that for some fixed direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ and for every point $z^0\in\mathbb{C}^n$
the function is holomorphic on its restriction on the slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}.$ An additional assumption on joint continuity for these functions allows to construct an analog of theory of entire functions having bounded index. The analog is applicable to study
properties of slice holomorphic solutions of directional differential equations, describe local behavior and value distribution.
In particular, we found conditions providing boundedness of $L$-index in the direction $\mathbf{b}$ for a function $f(\underbrace{\Phi(z),\ldots,\Phi(z)}_{m\text{ times}}),$
where $f: \mathbb{C}^n\to\mathbb{C}$ is a slice entire function, $\Phi: \mathbb{C}^n\to\mathbb{C}$ is a slice entire function,
${L}: \mathbb{C}^n\to\mathbb{R}_+$ is a continuous function.
The obtained results are also new in one-dimensional case, i.e. for $n=1,$ $m=1.$
They are deduced using new approach in this area analog of logarithmic criterion.
For a class of nonvanishing outer functions in the composition the sufficient conditions obtained by logarithmic criterion are weaker than the conditions by the Hayman theorem.

Author Biographies

V. P. Baksa, Lviv Politechnic National University Lviv, Ukraine

Lviv Politechnic National University
Lviv, Ukraine

A. I. Bandura, Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine

Ivano-Frankivsk National Technical University of Oil and Gas
Ivano-Frankivsk, Ukraine

T. M. Salo, Lviv Polytechnic National University, Lviv, Ukraine

Lviv Politechnic National University
Lviv, Ukraine

O. B. Skaskiv, Ivan Franko National University of Lviv, Lviv, Ukraine

Ivan Franko National University of Lviv, Lviv, Ukraine

References

A. Bandura, M. Martsinkiv, O. Skaskiv, Slice holomorphic functions in the unit ball having a bounded L-index in direction, Axioms, 10 (2021), №1, Article ID: 4. https://doi.org/10.3390/axioms10010004

A. Bandura, O. Skaskiv, Slice holomorphic functions in several variables with bounded L-index in direction, Axioms, 8 (2019), №3, Article ID: 88. http://doi.org/10.3390/axioms8030088

A.I. Bandura, O.B. Skaskiv, Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables, J. Math. Sci., 244 (2020), №1, 1–21. http://doi.org/10.1007/s10958-019-04600-7

A.I. Bandura, O.B. Skaskiv, Composition of slice entire functions and bounded L-index in direction, Bukovinian Math. J. 9 (2021), №1, 29–38. https://doi.org/10.31861/bmj2021.01.02

A.I. Bandura, O.B. Skaskiv, Boundedness of L-index for the composition of entire functions of several variables, Ukr. Math. J., 70 (2019), №10, 1538–1549. https://doi.org/10.1007/s11253-019-01589-9

A. Bandura, O. Skaskiv, Directional logarithmic derivative and the distribution of zeros of an entire function of bounded L-index along the direction, Ukr. Math. J., 69 (2017), №3, 500–508. https://doi.org/10.1007/s11253-017-1377-8

Bandura A., Skaskiv O., Entire functions of bounded L-index: Its zeros and behavior of partial logarithmic derivatives, J. Complex Analysis 2017, (2017) 1–10, Article ID 3253095. http://doi.org/10.1155/2017/3253095

A. Bandura, O. Skaskiv, Analytic functions in the unit ball of bounded L-index in joint variables and of bounded L-index in direction: a connection between these classes, Demonstr. Math., 52 (2019), №1, 82–87. http://doi.org/10.1515/dema-2019-0008

A. Bandura, Composition of entire functions and bounded L-index in direction, Mat. Stud., 47 (2017), №2, 179–184. http://doi.org/10.15330/ms.47.2.179-184

A.I. Bandura, T.M. Salo, O.B. Skaskiv: Note on composition of entire functions and bounded L-index in direction, Mat. Stud., 55 (2021), №1, 51–56. http://doi.org/10.30970/ms.55.1.51-56

V.P. Baksa, A.I. Bandura, T.M. Salo, Boundedness of the L-index in a direction of the sum and product of slice holomorphic functions in the unit ball, Mat. Stud., 57 (2022), №2, 216–224. http://doi.org/10.30970/ms.57.2.216-224

M.T. Bordulyak, M.M. Sheremeta, On the existence of entire functions of bounded l-index and l-regular growth, Ukr. Math. J., 48 (1996), №9, 1322–1340. http://doi.org/10.1007/BF02595355

M.T. Bordulyak, A proof of Sheremeta conjecture concerning entire function of bounded l-index, Mat. Stud., 12 (1999), №1, 108–110.

G.H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann., 206 (1973), 215–223.

G.H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28 (1975), №1, 101–122.

G.H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure Appl. Math., 11 (1980), №4, 428–432.

G.H. Fricke, S.M. Shah, On bounded value distribution and bounded index, Nonlinear Anal., 2 (1978), №4, 423–435.

W.K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), №1, 117–137.

M.M. Sheremeta, On the l-index boundedness of some composition of functions, Mat. Stud., 47 (2017), №2, 207–210. http://doi.org/10.15330/ms.47.2.207-210

B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proceedings of Symposia in Pure Math., 11, Am. Math. Soc., Providence (1968), 298–307.

J.J. Macdonnell, Some convergence theorems for Dirichlet-type series whose coefficients are entire functions of bounded index, Doctoral dissertation, Catholic University of America, Washington (1957).

F. Nuray, R.F. Patterson, Multivalence of bivariate functions of bounded index, Le Matematiche, 70 (2015), №2, 225–233. http://doi.org/10.4418/2015.70.2.14

R. Roy, S.M. Shah, The product of two functions of bounded value distribution, Indian J. Pure Appl. Math., 17 (1986), №5, 690–693.

R. Roy, S.M. Shah, Functions of bounded index, bounded value distribution and v-bounded index, Nonlinear Anal., 11 (1987), 1383–1390.

S. Shah, Entire functions of bounded value distribution and gap power series, In: P. Erdos, L. Alpar, G. Halasz, A. Sarkozy (eds.) Studies in Pure Mathematics To the Memory of Paul Turan, 629–634. Birkhauser Basel (1983). http://doi.org/10.1007/978-3-0348-5438-2_54

M.M. Sheremeta, Entire functions and Dirichlet series of bounded l-index, Russian Math. (Iz. VUZ), 36 (1992), №9, 76–82.

M.M. Sheremeta, A.D. Kuzyk, Logarithmic derivative and zeros of an entire function of bounded l-index, Sib. Math. J., 33 (1992), №2, 304–312. http://doi.org/10.1007/BF00971102

M. Sheremeta, Analytic functions of bounded index, VNTL Publishers, Lviv (1999).

M.M. Sheremeta, Generalization of the Fricke theorem on entire functions of finite index, Ukr. Math. J., 48 (1996), №3, 460–466. http://doi.org/10.1007/BF02378535

M.M. Sheremeta, M.T. Bordulyak, Boundedness of the l-index of Laguerre-Polya entire functions, Ukr. Math. J., 55 (2003), №1, 112–125. http://doi.org/10.1023/A:1025076720052

Published
2022-10-31
How to Cite
Baksa, V. P., Bandura, A. I., Salo, T. M., & Skaskiv, O. B. (2022). Note on boundedness of the $L$-index in the direction of the composition of slice entire functions. Matematychni Studii, 58(1), 58-68. https://doi.org/10.30970/ms.58.1.58-68
Section
Articles