Spectra of algebras of block-symmetric analytic functions of bounded type

  • A. Zagorodnyuk Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine
  • V. V. Kravtsiv Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine
Keywords: block-symmetric polynomials;, block-symmetric analytic functions;, spectrum of algebras;, symmetric intertwining operators;, symmetric convolution

Abstract

We investigate algebras of block-symmetric analytic functions on spaces $\ell_{p}(\mathbb{C}^s)$ which are $\ell_{p}$-sums of $\mathbb{C}^{s}.$ We consider properties of algebraic bases of block-symmetric polynomials,
intertwining operations on spectra of the algebras and representations of the spectra as a semigroup of analytic functions of exponential type of several variables. All invertible elements of the semigroup are described for the case $p=1.$

Author Biographies

A. Zagorodnyuk, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine

Vasyl Stefanyk Precarpathian National University
Ivano-Frankivsk, Ukraine

V. V. Kravtsiv, Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine

Vasyl Stefanyk Precarpathian National University
Ivano-Frankivsk, Ukraine

References

R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebra of symmetric holomorphic functions on ℓp, Bull. Lond. Math. Soc., 35 (2003), 55–64. doi: 10.1112/S0024609302001431

R.M. Aron, B.J. Cole, T.W. Gamelin, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math., 415 (1991), 51–93. doi: 10.1515/crll.1991.415.51

R.M. Aron, J. Falc´o, D. Garc´ıa, M. Maestre, Algebras of symmetric holomorphic functions of several complex variables, Rev. Mat. Complut., 31 (2018), 651–672. doi: 10.1007/s13163-018-0261-x

R.M. Aron, J. Falc´o, M. Maestre, Separation theorems for group invariant polynomials, J. Geom. Anal., 28 (2018), 393–404. doi: 10.1007/s12220-017-9825-0

R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. Lond. Math. Soc., 48 (2016), 779–796. doi: 10.1112/blms/bdw043.

A. Bandura, V. Kravtsiv, T. Vasylyshyn, Algebraic basis of the algebra of all symmetric continuous polynomials on the cartesian product of ℓp-Spaces, Axioms, 11 (2022), 41. doi: 10.3390/axioms11020041

I.V. Chernega, A semiring in the spectrum of the algebra of symmetric analytic functions in the space ℓ1, J. Math. Sci., 212 (2016), 38–45. doi: 10.1007/s10958-015-2647-3 Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, 57 (2014), 35–40.

I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinb. Math. Soc., 55 (2012), 125–142. doi: 10.1017/S0013091509001655

I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. Math. Anal. Appl., 395 (2012), 569–577. doi: 10.1016/j.jmaa.2012.04.087

I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut., 27 (2014), 575–585. doi: 10.1007/s13163-013-0128-0

Y. Chopyuk, T. Vasylyshyn, A. Zagorodnyuk, Rings of Multisets and Integer Multinumbers, Mathematics, 10 (2022), 778. doi: 10.3390/math10050778

S. Dineen, Complex analysis on infinite-dimensional spaces, Springer-Verlag, London, 1999.

J. Falc´o, D. Garc´ıa, M. Jung, M. Maestre, Group-invariant separating polynomials on a Banach space, Publicacions Matematiques, 66 (2022), 207–233. doi: 10.5565/PUBLMAT6612209

P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on L∞, Proc. Roy. Soc. Edinburgh Sect. A., 147 (2017), 743–761. doi: 10.1017/S0308210516000287

M. Gonzalez, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement-invariant function spaces, J. Lond. Math. Soc., 59 (1999), 681–697. doi: 10.1112/S0024610799007164

S. Halushchak Spectra of some algebras of entire functions of bounded type, generated by a sequence of polynomials, Carpathian Math. Publ., 11 (2019), 311–320. doi: 10.15330/cmp.11.2.311-320

G.H. Hardy, S. Ramanujan. Asymptotic formulas in combinatory analysis, Proc. London Math. Soc., 2 (1918), 75–115. Reprinted in Collected Papers of Srinivase Ramanujan, edited by G. H. Hardy et al. (Chelsea Publishing Company, NY, 1962).

D. Hilbert, Theory of algebraic invariants, Cambridge Univ. Press, Cambridge, NY, 1993.

F. Jawad, Note on separately symmetric polynomials on the Cartesian product of ℓp, Mat. Stud., 50 (2018), 204–210. doi: 10.15330/ms.50.2.204-210

F. Jawad, A. Zagorodnyuk, Supersymmetric polynomials on the space of absolutely convergent series. Symmetry, 11 (2019), 1111. doi: 10.3390/sym11091111

V. Kravtsiv, Algebraic basis of the algebra of block-symmetric polynomials on ℓ1⊕ℓ∞, Carpathian Math. Publ., 11 (2019), 89—95. doi: 10.15330/cmp.11.1.89-95

V. Kravtsiv, Analogues of the Newton formulas for the block-symmetric polynomials, Carpathian Math. Publ., 12 (2020), 17-–22. doi: 10.15330/cmp.12.1.17-22

V.V. Kravtsiv, The analogue of newton’s formula for block-symmetric polynomials, International Journal of Mathematical Analysis, 10 (2016), N 7, 323–327. doi: 10.12988/ijma.2016.617

V. Kravtsiv, Zeros of block-symmetric polynomials on Banach spaces, Mat. Stud., 53 (2020), N 2, 2016–2011. doi: 10.30970/ms.53.2.206-211

V. Kravtsiv, T. Vasylyshyn, A. Zagorodnyuk, On algebraic basis of the algebra of symmetric polynomials on lp(Cn), J. Funct. Spaces, 2017 (2017), 4947925. doi: 10.1155/2017/4947925

V. Kravtsiv, A. Zagorodnyuk, Representation of spectra of algebras of block-symmetric analytic functions of bounded type, Carpathian Math. Publ., 8 (2016), 263–271. doi: 10.15330/cmp.8.2.263-271

J. Lindestrauss, L. Tzafriri, Classical Banach spaces i. Sequence Spaces, Springer-Verlag, New York, 1977.

I. G. Macdonald, Symmetric Functions and Orthogonal Polynomials, AMS: University Lecture Serie 12, Providence, RI, 1997.

A. Nemirovskii, S. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSRSbornik, 21 (1973), N 2, 255—277. doi: 10.1070/SM1973v021n02ABEH002016

D.E. Papush, On the growth of entire functions with “plane” zeros, J. Soviet Math., 49 (1990), N 2, 930—935. doi: 10.1007/BF02205642

L. I. Ronkin, Introduction in the theory of entire functions of several variables, AMS, Providence, R.I., 1974.

M. Rosas, MacMahon symmetric functions, the partition lattice, and Young subgroups, J. Combin. Theory Ser. A, 96 (2001), 326-–340. doi: 10.1006/jcta.2001.3186

H. J. Schmidt, J. Schnack, Symmetric polynomials in physics, In: J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. M´etens, J.-Y. Thibon., Inst. Phys. Conf. Ser., 173 (2003), IOP: Bristol, Philadelphia, 147–152.

T.V. Vasylyshyn, The algebra of symmetric polynomials on (L∞)n, Mat. Stud., 52 (2019), 71–85, doi: 10.30970/ms.52.1.71-85

T. Vasylyshyn, Symmetric functions on spaces ℓp(Rn) and ℓp(Cn). Carpathian Math. Publ., 12 (2020), 5–16. doi: 10.15330/cmp.12.1.5-16

H.Weyl, The classical group: their invariants and representations, Princeton university press: Princenton, New Jersey, 1973.

A. Zagorodnyuk, V. Kravtsiv, Multiplicative convolution on the algebra of block-symmetric analytic functions, J. Math. Sci., 246 (2020), 245—255. doi: 10.1007/s10958-020-04734-z

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R.R. Salakhutdinov, A.J. Smola, Deep sets, In: Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. 2017, 3391–3401.

Published
2022-10-31
How to Cite
Zagorodnyuk, A., & Kravtsiv, V. V. (2022). Spectra of algebras of block-symmetric analytic functions of bounded type. Matematychni Studii, 58(1), 69-81. https://doi.org/10.30970/ms.58.1.69-81
Section
Articles