Minimal growth of entire functions with prescribed zeros outside exceptional sets
Abstract
Let $h$ be a positive continuous increasing to $+\infty$ function on $\mathbb{R}$. It is proved that for an arbitrary complex sequence $(\zeta_n)$ such that $0<|\zeta_1|\le|\zeta_2|\le\dots$ and $\zeta_n\to\infty$ as $n\to\infty$, there exists an entire function $f$ whose zeros are the $\zeta_n$, with multiplicities taken into account, for which
$$
\ln m_2(r,f)=o(N(r)),\quad r\notin E,\ r\to+\infty.
$$
with a set $E$ satisfying $\int_{E\cap(1,+\infty)}h(r)dr<+\infty$, if and only if $\ln h(r)=O(\ln r)$ as $r\to+\infty$.
Here $N(r)$ is the integrated counting function of the sequence $(\zeta_n)$ and
$$
m_2(r,f)=\left(\frac{1}{2\pi}\int_0^{2\pi}|\ln|f(re^{i\theta})||^2d\theta\right)^{1/2}.
$$
References
A.A. Gol’dberg, The representation of a meromorphic function in the form of a quotient of entire functions, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (1972), 13–17. (in Russian)
I.V. Andrusyak, P.V. Filevych, The growth of an entire function with a given sequence of zeros, Mat. Stud., 30 (2008), №2, 115–124.
W. Bergweiler, Canonical products of infinite order, J. Reine Angew. Math., 430 (1992), 85–107. doi.org/10.1515/crll.1992.430.85
W. Bergweiler, A question of Gol’dberg concerning entire functions with prescribed zeros, J. Anal. Math., 63 (1994), №1, 121–129. doi.org/10.1007/BF03008421
J. Miles, On the growth of entire functions with zero sets having infinite exponent of convergence, Ann. Acad. Sci. Fenn. Math., 27 (2002), 69–90.
M.M. Sheremeta, A remark to the construction of canonical products of minimal growth, Mat. Fiz. Anal. Geom., 11 (2004), №2, 243–248.
I.V. Andrusyak, P.V. Filevych, The minimal growth of entire function with given zeros, Nauk. Visn. Chernivets’kogo Univ. Mat., 421 (2008), 13–19. (in Ukrainian)
I.V. Andrusyak, P.V. Filevych, The growth of entire function with zero sets having integer-valued exponent of convergence, Mat. Stud., 32 (2009), №1, 12–20. (in Ukrainian)
I.V. Andrusyak, P.V. Filevych, The minimal growth of entire functions with given zeros along unbounded sets, Mat. Stud., 54 (2020), №2, 146–153. doi.org/10.30970/ms.54.2.146-153
A.A. Kondratyuk, Y.V. Vasyl’kiv, Growth majorants and quotient representations of meromorphic functions, Comput. Methods Funct. Theory, 1 (2001), №2, 595–606. doi.org/10.1007/BF03321007
A.A. Gol’dberg, I.V. Ostrovskii, Value distribution of meromorphic functions, Nauka, Moscow, 1970. (in Russian)
W. Bergweiler, On meromorphic functions that share three values and on the exceptional set in Wiman-Valiron theory, Kodai Math. J., 13 (1990), №1, 1–9. doi.org/10.2996/kmj/1138039154
P.V. Filevych, On the London theorem concerning the Borel relation for entire functions, Ukr. Math. J., 50 (1998), №11, 1801–1804. doi.org/10.1007/BF02524490
O.B. Skaskiv, P.V. Filevych, On the size of an exceptional set in the Wiman theorem, Mat. Stud., 12 (1999), №1, 31–36.
P.V. Filevych, On an estimate of the size of the exceptional set in the lemma on the logarithmic derivative, Math. Notes, 67 (2000), №4, 512–515. doi.org/10.1007/BF02676408
P.V. Filevych, An exact estimate for the measure of the exceptional set in the Borel relation for entire functions, Ukr. Math. J., 53 (2001), №2, 328–332. doi.org/10.1023/A:1010489609188
O.B. Skaskiv, T.M. Salo, Entire Dirichlet series of rapid growth and new estimates for the measure of exceptional sets in theorems of the Wiman-Valiron type, Ukr. Math. J., 53 (2001), №6, 978–991. doi.org/10.1023/A:1013308103502
P.V. Filevych, Asymptotic relations between maximums of absolute values and maximums of real parts of entire functions, Math. Notes, 75 (2004), №3-4, 410–417. doi.org/10.1023/B:MATN.0000023320.27440.57
O.B. Skaskiv, T.M. Salo, Minimum modulus of lacunary power series and h-measure of exceptional sets, Ufa Math. J., 9 (2017), №4, 135–144. doi.org/10.13108/2017-9-4-135
J. Miles, D.F. Shea, On the growth of meromorphic functions having at least one deficient value, Duke Math. J., 43 (1976), №1, 171–186. doi.org/10.1215/S0012-7094-76-04315-5
M. Magola, P. Filevych, The distribution of values of random analytic functions, Mat. Visn. Nauk. Tov. Im. Shevchenka, 9 (2012), 180–215. (in Ukrainian)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.