On linear sections of orthogonally additive operators
Abstract
Our first result asserts that, for linear regular operators acting from a Riesz space with the principal projection property to a Banach lattice with an order continuous norm, the $C$-compactness is equivalent to the $AM$-compactness. Next we prove that, under mild assumptions, every linear section of a $C$-compact orthogonally additive operator is $AM$-compact, and every linear section of a narrow orthogonally additive operator is narrow.
References
N. Abasov, M. Pliev. On extensions of some nonlinear maps in vector lattices. J. Math. Anal. Appl. 455, №1, (2017), 516–527. DOI: 10.1016/j.jmaa.2017.05.063
C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
W.A. Feldman, A factorization for orthogonally additive operators on Banach lattices, J. Math. Anal. and Appl., 472, №1, (2019), 238–245.
O. Fotiy, I. Krasikova, M. Pliev, M. Popov, Order continuity of orthogonally additive operators, Results in Math., 77, Article number: 5 (2022) https://doi.org/10.1007/s00025-021-01543-x
I. Krasikova, M. Pliev, M. Popov, Measurable Riesz spaces. Carpathian Math. Publ., 13, №1, (2021), 81–88. DOI: 10.15330/cmp.13.1.81-88
V. Kadets, A course in Functional Analysis and Measure Theory. Translated from the Russian by Andrei Iacob. Universitext. Cham: Springer, 2018.
A.K. Kitover, A.W. Wickstead, Operator norm limits of order continuous operators, Positivity, 9, №3, (2005), 341–355.
M. Martin, J. Meri, M. Popov, On the numerical radius of operators in Lebesgue spaces, J. Funct. Anal., 261, №1, (2011), 149–168. DOI: 10.1016/j.jfa.2011.03.007
O.V. Maslyuchenko, V.V. Mykhaylyuk, M.M. Popov, A lattice approach to narrow operators, Positivity, 13, №3, (2009), 459–495.
J.M. Mazon, S. Segura de Le´on, Order bounded orthogonally additive operators, Rev. Roumane Math. Pures Appl., 35, №4, (1990), 329–353.
J.M. Mazon, S. Segura de Leon, Uryson operators, Rev. Roumane Math. Pures Appl., 35, №5, (1990), 431–449.
V. Mykhaylyuk, M. Pliev, M. Popov, The lateral order on Riesz spaces and orthogonally additive operators, Positivity, 25, №2, (2021), 291–327. DOI: 10.1007/s11117-020-00761-x.
V. Orlov, M. Pliev, D. Rode, Domination problem for AM-compact abstract Uryson operators, Arch. Math., 107, №5, (2016), 543–552. DOI: 10.1007/s00013-016-0937-8
A.M. Plichko, M.M. Popov, Symmetric function spaces on atomless probability spaces, Dissertationes Math., (Rozprawy Mat.), 306 (1990), 1–85.
M. Pliev, Narrow operators on lattice-normed spaces, Cent. Eur. J. Math., 9, №6, (2011), 1276–1287.
M. Pliev, On C-compact orthogonally additive operators, J. Math. Anal. Appl., 494, №1, (2021), 291–327. DOI: 10.1016/j.jmaa.2020.124594
M. Pliev, X. Fang, Narrow orthogonally additive operators in lattice-normed spaces, Sib. Math. J., 58, №1,(2017), 134–141.
M.A. Pliev, M.M. Popov, Narrow orthogonally additive operators, Positivity, 18, №4, (2014), 641–667.
M.A. Pliev, M.M. Popov, On extension of abstract Uryson operators, Siberian Math. J., 57, №3, (2016), 552-–557.
M.M. Popov, An elementary proof of the non-existence of non-zero compact operators acting from the space Lp, 0 < p < 1, Mat. Zametki, 47, №5, (1990), 154–155. (in Russian)
M. Popov, Banach lattices of orthogonally additive operators, J. Math. Anal. Appl., 514, №1, (2022),126279. DOI: https://doi.org/10.1016/j.jmaa.2022.126279
M. Popov, B. Randrianantoanina, Narrow operators on function spaces and vector lattices, De Gruyter Studies in Mathematics 45, Berlin-Boston, De Gruyter, 2013.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.