On linear sections of orthogonally additive operators

  • A. Gumenchuk Department of Biological Physics and Medical Informatics, Bukovinian State Medical University
  • I. Krasikova Zaporizhzhya National University
  • M. Popov Pomeranian University in Słupsk, Słupsk
Keywords: orthogonally additive operator;, narrow operator;, C-compact operator;, AM-compact operator

Abstract

Our first result asserts that, for linear regular operators acting from a Riesz space with the principal projection property to a Banach lattice with an order continuous norm, the $C$-compactness is equivalent to the $AM$-compactness. Next we prove that, under mild assumptions, every linear section of a $C$-compact orthogonally additive operator is $AM$-compact, and every linear section of a narrow orthogonally additive operator is narrow.

Author Biographies

A. Gumenchuk, Department of Biological Physics and Medical Informatics, Bukovinian State Medical University

Department of Biological Physics and Medical Informatics, Bukovinian State Medical University

I. Krasikova, Zaporizhzhya National University

Zaporizhzhya National University

M. Popov, Pomeranian University in Słupsk, Słupsk

Institute of Mathematics

References

N. Abasov, M. Pliev. On extensions of some nonlinear maps in vector lattices. J. Math. Anal. Appl. 455, №1, (2017), 516–527. DOI: 10.1016/j.jmaa.2017.05.063

C.D. Aliprantis, O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.

W.A. Feldman, A factorization for orthogonally additive operators on Banach lattices, J. Math. Anal. and Appl., 472, №1, (2019), 238–245.

O. Fotiy, I. Krasikova, M. Pliev, M. Popov, Order continuity of orthogonally additive operators, Results in Math., 77, Article number: 5 (2022) https://doi.org/10.1007/s00025-021-01543-x

I. Krasikova, M. Pliev, M. Popov, Measurable Riesz spaces. Carpathian Math. Publ., 13, №1, (2021), 81–88. DOI: 10.15330/cmp.13.1.81-88

V. Kadets, A course in Functional Analysis and Measure Theory. Translated from the Russian by Andrei Iacob. Universitext. Cham: Springer, 2018.

A.K. Kitover, A.W. Wickstead, Operator norm limits of order continuous operators, Positivity, 9, №3, (2005), 341–355.

M. Martin, J. Meri, M. Popov, On the numerical radius of operators in Lebesgue spaces, J. Funct. Anal., 261, №1, (2011), 149–168. DOI: 10.1016/j.jfa.2011.03.007

O.V. Maslyuchenko, V.V. Mykhaylyuk, M.M. Popov, A lattice approach to narrow operators, Positivity, 13, №3, (2009), 459–495.

J.M. Mazon, S. Segura de Le´on, Order bounded orthogonally additive operators, Rev. Roumane Math. Pures Appl., 35, №4, (1990), 329–353.

J.M. Mazon, S. Segura de Leon, Uryson operators, Rev. Roumane Math. Pures Appl., 35, №5, (1990), 431–449.

V. Mykhaylyuk, M. Pliev, M. Popov, The lateral order on Riesz spaces and orthogonally additive operators, Positivity, 25, №2, (2021), 291–327. DOI: 10.1007/s11117-020-00761-x.

V. Orlov, M. Pliev, D. Rode, Domination problem for AM-compact abstract Uryson operators, Arch. Math., 107, №5, (2016), 543–552. DOI: 10.1007/s00013-016-0937-8

A.M. Plichko, M.M. Popov, Symmetric function spaces on atomless probability spaces, Dissertationes Math., (Rozprawy Mat.), 306 (1990), 1–85.

M. Pliev, Narrow operators on lattice-normed spaces, Cent. Eur. J. Math., 9, №6, (2011), 1276–1287.

M. Pliev, On C-compact orthogonally additive operators, J. Math. Anal. Appl., 494, №1, (2021), 291–327. DOI: 10.1016/j.jmaa.2020.124594

M. Pliev, X. Fang, Narrow orthogonally additive operators in lattice-normed spaces, Sib. Math. J., 58, №1,(2017), 134–141.

M.A. Pliev, M.M. Popov, Narrow orthogonally additive operators, Positivity, 18, №4, (2014), 641–667.

M.A. Pliev, M.M. Popov, On extension of abstract Uryson operators, Siberian Math. J., 57, №3, (2016), 552-–557.

M.M. Popov, An elementary proof of the non-existence of non-zero compact operators acting from the space Lp, 0 < p < 1, Mat. Zametki, 47, №5, (1990), 154–155. (in Russian)

M. Popov, Banach lattices of orthogonally additive operators, J. Math. Anal. Appl., 514, №1, (2022),126279. DOI: https://doi.org/10.1016/j.jmaa.2022.126279

M. Popov, B. Randrianantoanina, Narrow operators on function spaces and vector lattices, De Gruyter Studies in Mathematics 45, Berlin-Boston, De Gruyter, 2013.

Published
2022-10-31
How to Cite
Gumenchuk, A., Krasikova, I., & Popov, M. (2022). On linear sections of orthogonally additive operators. Matematychni Studii, 58(1), 94-102. https://doi.org/10.30970/ms.58.1.94-102
Section
Articles