On graded WAG2-absorbing submodule

  • K. Al-Zoubi Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan
  • Mariam Al-Azaizeh Department of Mathematics, University of Jordan Amman, Jordan
Keywords: graded weakly primary submodule;, graded weakly 2-absorbing submodule;, graded WAG2- absorbing submodule

Abstract

Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce the concept of graded $WAG2$-absorbing submodule. A number of results concerning of these classes of graded submodules and their homogeneous components are given.

Let $N=\bigoplus _{h\in G}N_{h}$ be a graded submodule of $M$ and $h\in G.$ We say that $N_{h}$ is a $h$-$WAG2$-absorbing submodule of the $R_{e}$-module $M_{h}$ if $N_{h}\neq M_{h}$; and whenever $r_{e},s_{e}\in R_{e}$ and $m_{h}\in M_{h}$ with $0\neq r_{e}s_{e}m_{h}\in N_{h}$, then either $%
r_{e}^{i}m_{h}\in N_{h}$ or $s_{e}^{j}m_{h}\in N_{h}$ or $%(r_{e}s_{e})^{k}\in (N_{h}:_{R_{e}}M_{h})$ for some $i,$ $j,$ $k$ $\in\mathbb{N}.$ We say that $N$ is {a graded }$WAG2${-absorbing submodule of }$M$ if $N\neq M$; and whenever $r_{g},s_{h}\in h(R)$ and $%m_{\lambda }\in h(M)$ with $0\neq r_{g}s_{h}m_{\lambda }\in N$, then either $r_{g}^{i}m_{\lambda }\in N$ or $s_{h}^{j}m_{\lambda }\in N$ or $%(r_{g}s_{h})^{k}\in (N:_{R}M)$ for some $i,$ $j,$ $k$ $\in \mathbb{N}.$ In particular, the following assertions have been proved:

Let $R$ be a $G$-graded ring, $M$ a graded cyclic $R$-module with $%Gr((0:_{R}M))=0$ and $N$ a graded submodule of $M.$ If $N$ is a graded $WAG2$% {-absorbing submodule of }$M,$ then\linebreak $Gr((N:_{R}M))$ is a graded $WAG2$% -absorbing ideal of $R$ (Theorem 4).

Let $R_{1}$ and $R_{2}$ be a $G$-graded rings. Let $R=R_{1}\bigoplus R_{2}$ be a $G$-graded ring and $M=M_{1}\bigoplus M_{2}$ a graded $R$-module. Let $N_{1},$ $N_{2}$ be a proper graded submodule of $M_{1}$, $M_{2}$ respectively. If $N=N_{1}\bigoplus N_{2}$ is a graded $WAG2$-absorbing submodule of $M,$ then $N_{1}$ and $N_{2}$ are graded weakly primary submodule of $R_{1}$-module $M_{1},$ $R_{2}$-module $M_{2},$ respectively. Moreover, If $N_{2}\neq 0$ $(N_{1}\neq 0),$ then $N_{1}$ is a graded weak primary submodule of $R_{1}$-module $M_{1}$ $(N_{2}$ is a graded weak primary submodule of $R_{2}$-module  $M_{2})$ (Theorem 7).

Author Biographies

K. Al-Zoubi, Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan

Department of Mathematics and Statistics, Jordan University of Science and Technology, Jordan

Mariam Al-Azaizeh, Department of Mathematics, University of Jordan Amman, Jordan

Department of Mathematics, University of Jordan
Amman, Jordan

References

K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sci. Adv. Appl., 28 (2014), 45–60.

K. Al-Zoubi, R. Abu-Dawwas, S. ¸Ceken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48 (2019), №3, 724–731.

K. Al-Zoubi, M. Al-Azaizeh, On graded weakly 2-absorbing primary submodules, Vietnam J. Math. 47 (2019), №2, 297–307.

K. Al-Zoubi, M. Al-Azaizeh, Some properties of graded 2-absorbing and graded weakly 2-absorbing submodules, J. Nonlinear Sci. Appl., 12 (2019), 503–508.

K. Al-Zoubi, F. AL-Turman, On Graded weakly classical primary submodules, Proc. Jangjeon Math. Soc., 21 (2018), №3, 405–412.

A.E. Ashour, On weakly almost generalized 2-absorbing sub-modules of modules, Journal of Islamic University-Gaza, 25 (2017), №2, 2409–4587.

S.E. Atani, On graded prime submodules, Chiang Mai. J. Sci., 33 (2006), №1, 3–7.

S.E. Atani, On graded weakly primary ideals, Quasigroups and related systems, 13 (2005), 185–191.

S. Chinwarakorn, S. Pianskool, On almost generalized 2-absorbing and weakly almost generalized 2-absorbing structures, Science Asia, 41 (2015), 64–72.

R. Hazrat, Graded rings and graded grothendieck groups, , Cambridg: Cambridge University Press, 2016.

C. Nastasescu, F.Van Oystaeyen, Graded and filtered rings and modules, Lecture notes in mathematics, V.758, Berlin-New York: Springer-Verlag, 1982.

C. Nastasescu, F.Van Oystaeyen, Graded ring theory, Mathematical Library, V.28, Amsterdam: North Holand, 1982.

C. Nastasescu, F.Van Oystaeyen, Methods of graded rings, LNM, V.836, Berlin-Heidelberg: Springer-Verlag, 2004.

S.R. Naghani, H.F. Moghimi, On Graded 2-Absorbing and Graded Weakly 2-Absorbing Ideals of a Commutative Ring, Cankaya University Journal of Science and Engineering, 13 (2016), №2, 011–017.

K.H. Oral, U. Tekir, A.G. Agargun, On graded prime and primary submodules, Turk. J. Math., 35 (2011), 159–167.

M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math., 28 (2004), №3, 217–229.

Published
2022-10-31
How to Cite
Al-Zoubi, K., & Al-Azaizeh, M. (2022). On graded WAG2-absorbing submodule. Matematychni Studii, 58(1), 13-19. https://doi.org/10.30970/ms.58.1.13-19
Section
Articles