Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping
Abstract
In the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such immersions there are two types of the transversal distribution equiaffine frame.
We give a parametrization of a submanifold with the given properties for both types of equiaffine frame. The main result of the paper is contained in Theorems 1, 2 and Corollary 1: Let $f\colon ({M}^n,\nabla)\rightarrow
({\mathbb{R}}^{n+2},D)$ be an affine immersion with pointwise codimension 2, equiaffine structure, flat connection $\nabla$, one-dimensional Weingarten mapping then there exists three types of its parametrization:
$(i)$
$\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int
\vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$
$(ii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$
$(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1)
\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1.$
References
Magid M., Vrancken L. Flat affine surfaces in $mathbb{R}^4$ with flat normal connection// Geometriae Dedicata. – 2000. – V.81. – P. 19–31.
Nomizu K., Pinkall U. On the geometry of affine immersions// Mathematische Zeitschrift. – 1987. – Bd.195. – P. 165–178.
Nomizu K., Sasaki T. Affine differential geometry. – Cambridge University Press, 1994. – 264 p.
Nomizu K., Vrancken L. A new equiaffine theory for surfaces in $mathbb{R}^4$// International J. Math. – 1993. – V.4. – P. 127–165.
Shugailo E.A. Parallel affine immersions ${M}^nrightarrow {mathbb{R}}^{n+2}$ with flat connection// Ukr. Math. J. – 2014. – V.65, №9. – P. 1426–1445.
Shugailo O.O. Affine submanifolds of rank two// Journal of Math. Physics, Analysis, Geometry. – 2013. – V.9, №2. – P. 227–238.
Shugailo O.O. On affine immersions with flat connections// Journal of Math. Physics, Analysis, Geometry. – 2012. – V.8, №1. – P. 90–105.
Copyright (c) 2023 O. O. Shugailo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.