Note to the behavior of the maximal term of Dirichlet series absolutely convergent in half-plane
Abstract
By $S_0(\Lambda)$ denote a class of Dirichlet series $F(s)=\sum_{n=0}^{\infty}a_n\exp\{s\lambda_n\} (s=\sigma+it)$ with
an increasing to $+\infty$ sequence $\Lambda=(\lambda_n)$ of exponents ($\lambda_0=0$) and the abscissa of absolute convergence $\sigma_a=0$.
We say that $F\in S_0^*(\Lambda)$ if $F\in S_0(\Lambda)$ and $\ln \lambda_n=o(\ln |a_n|)$ $(n\to\infty)$. Let
$\mu(\sigma,F)=\max\{|a_n|\exp{(\sigma\lambda_n)}\colon n\ge 0\}$ be the maximal term of Dirichlet series. It is proved that in order that
$\ln (1/|\sigma|)=o(\ln \mu(\sigma))$ $(\sigma\uparrow 0)$ for every function $F\in S_0^*(\Lambda)$ it is necessary and sufficient that
$\displaystyle \varlimsup\limits_{n\to\infty}\frac{\ln \lambda_{n+1}}{\ln \lambda_n}<+\infty. $
For an analytic in the disk $\{z\colon |z|<1\}$ function $f(z)=\sum_{n=0}^{\infty}a_n z^n$ and $r\in (0, 1)$ we put $M_f(r)=\max\{|f(z)|\colon |z|=r<1\}$ and $\mu_f(r)=\max\{|a_n|r^n\colon n\ge 0\}$. Then from hence we get the following statement: {\sl if there exists a sequence $(n_j)$ such that
$\ln n_{j+1}=O(\ln n_{j})$ and $\ln n_{j}=o(\ln |a_{n_{j}}|)$ as $j\to\infty$, then the functions $\ln \mu_f(r)$ and $\ln M_f(r)$ are or not are slowly increasing simultaneously.
References
M.M. Sheremeta, M.V. Zabolotskyi, Slow growth of power series convergent in the unit disk, Mat. Stud., 11 (1999), No2, 221–224.
P.V. Filevych, On the slow growth of power series convergent in the unit disk, Mat. Stud., 16 (2001), No2, 217–221.
M.M. Sheremeta, S.I. Fedynyak, On the derivative of Dirichlet series, Sibirsk. mat. journ., 39 (1998), No1, 206–223. (in Russian)
M.M. Sheremeta, O.M. Sumyk, Connection between the growth of conjugated by Joung functions, Mat.
Stud., 11 (1999), No2, 221–224. (in Ukrainian)
M.M. Sheremeta, Asymptotic behavior of Laplace-Stieltjes integrals, VNTL Publishers, 2010.
M.V. Zabolotskyi, M.M. Sheremeta, Generalization of Lindeloff ’s theorem, Ukr. Math. Zh., 50 (1998), No1, 1177–1197. (in Ukrainian)
O.M. Sumyk, Estimates from below of the maximal term of Dirichlet series, Visnyk Lviv Univer. Series
Mech. Math., 53 (1999), 40–44. (in Ukrainian)
Copyright (c) 2021 M.M. Sheremeta
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.