Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
Abstract
We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+
\sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$.
In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.
References
S. Albeverio, M. Pratsiovytyi, G. Torbin, Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension, Ergod. Th. & Dynam. Sys., 24 (2004), 1–16.
L. Bourdin, O. Stanzhytskyi, E. Trelat, Addendum to Pontryagin’s maximum principle for dynamic systems on time scales, Journal of Difference Equations and Applications, 23 (2017), No10, 1760–1763.
S. Kakeya, On the partial sums of an infinite series, Tohoku Sci Rep., 3 (1914), No4, 159–164.
N.O. Korsun, M.V. Ptaysiovytyi, About the set of incomplete sums of positive seriess with one condition of homogeneity and generalization of the binary representation of numbers, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Dragomanova, Ser 1. Fiz.-Mat. Nauky, 10 (2009), No10, 28–39.
J.A. Guthrie, I.E. Nymann, The topological structure of the set of subsums of an infinite series, Collog. Math., 55 (1988), No2, 323–327.
V.P. Markitan, M.V. Pratsiovytyi, I.O. Savchenko, Superfractality of the set of incomplete sums of one positive series, Ukr. Mat. Zh., 70 (2018), No10, 1403–1416.
G. Marsaglia, Random variables with independent binary digits, Ann. Math. Statist., 42 (1971), No2, 1922–1929.
J.E. Nymann, R.A. Saenz, On the paper of Guthrie and Nymann on subsums of infinite series, The topological structure of the set of subsums of an infinite series, Collog. Math., 68 (1995), 259–264.
M. Pratsiovytyi, O. Makarchuk, D. Karvatsky, Lebesgue structure of asymmetric Bernoulli convolution based on Jacobsthal–Lucas sequence, Random operators and stochastic equations, Random Oper. Stoch. Equ., 28 (2020), No2, 123–130.
R. Salem, On some singular monotonic functions which are strigly increasing, Trans. Amer. Math. Soc., 53 (1943), 423–439.
Ya. Vynnyshyn, V. Markitan, M. Pratsiovytyi, I. Savchenko, Positive series whose sets of incomplete sums are Cantorvals, Proceedings of the Inter. Geometry Center, 12 (2019), No2, 26–42. (in Ukrainian)
Bl.Kh. Sendov, Binary self-similar fractal functions, Fundamentalnaya i prikladnaya matematika, 5 (1999), No2, 589–595. (in Russian)
M.V. Pratsiovytyi, Fractal approach to the study of singular distributions, Kyiv: Nats. Pedagog. Mykhailo Dragomanov Univ., 1998. (in Ukrainian)
M.V. Pratsiovytyi, Random variables with independent Q2 -symbols, Asymptotic Methods in the Study of Stochastic Models, Inst. Math. Nation. Acad. Sci. Ukraine, Kyiv, 1987, 92–102. (in Russian)
M.V. Pratsiovytyi, Ya.V. Goncharenko, S.O. Dmytrenko, I.M. Lysenko, S.P. Ratushniak, About one class of function with fractal properties, Bukovynian Mathematical Journal, 6 (2021), No1, 273–283. (in Ukrainian)
M. Pratsiovytyi, I. Lysenko, Yu. Maslova, Group of continuous transformations of real interval preserving tails of G2-representation of numbers, Algebra and Discrete Mathematics, 29 (2020), No1, 99–108.
M.V. Pratsiovytyi, S.P. Ratushniak, Independent digits of Q2 -representation of random variable with a given distribution, Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine, 16 (2019), No3, 79–91. (in Ukrainian)
M.V. Pratsiovytyi, S.P. Ratushniak, Continuous nowhere monotone nondifferentiable function with fractal properties defined in terms Q2 -representation, Nonlinear oscillations, 23 (2020), No2, 231–252. (in Ukrainian)
M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation, International Journal of Math. Analysis, 7 (2013), No61–67, 3155–3169.
M.V. Pratsiovytyi, G.M. Torbin, Fractal geometry and transformation preserving the Hausdorff-Besicovith dimension, Dynam. Sys.: Proceedings of the Ukrainian Mathematical Congress, 2001, K.: Inst. Math. Nation. Acad. Sci. Ukraine, 2003, 77–93. (in Ukrainian)
G.M. Torbin, M.V. Pratsiovytyi, Random variables with independent Q∗ -digits (in Russian), in: Random 2Evolutions: Theoretical and Applied Problems, Inst. Math. Natl. Acad. Sci. Ukraine, Kyiv, (1992), 95–104. (in Ukrainian)
Copyright (c) 2021 M.V. Pratsovytyi, Ya. V. Goncharenko, I. M. Lysenko, S.P. Ratushniak
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.