On asymorphisms of finitary coarse spaces
Abstract
We characterize finitary coarse spaces X such that every permutation of X is an asymorphism.
References
D. Dikranjan, I. Protasov, K. Protasova, N. Zava, Balleans, hyperballeans and ideals, Appl. Gen. Topology, 20 (2019), 431–447.
I.V. Protasov, Balleans of bounded geometry and G-spaces, Algebra Discrete Math., 7 (2008), №2, 101–108.
I. Protasov, Decompositions of set-valued mappings, Algebra Discrete Math., 30 (2020), №2, 235–238.
I. Protasov, T. Banakh, Ball structures and colorings of groups and graphs, Math. Stud. Monogr. Ser., V.11, VNTL, Lviv, 2003.
I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., V. 31, American Mathematical Society, Providence RI, 2003.
Copyright (c) 2021 I. V. Protasov
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.