Point-wise estimates for the derivative of algebraic polynomials
Abstract
We give a sufficient condition on coefficients $a_k$ of an algebraic polynomial $P(z)=\sum\limits_{k=0}^{n}a_kz^k$, $a_n\not=0,$ such that the pointwise Bernstein inequality $|P'(z)|\le n|P(z)|$ is true for all $z,\ |z|\le 1$.
References
N.K. Govil, On the derivative of a polynomial. Proc. Amer. Math. Soc. 41 (1973), 543–546.
A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. Theory, 55 (1988), №2, 232–239.
G.V. Milovanovi´c, D.S. Mitrinovi´c, Th.M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 821 p.
Q.I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs, New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002, 742 p.
T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, 75. Cambridge University Press, Cambridge, 2002, 428 p.
V.I. Danchenko, M.A. Komarov, P.V. Chunaev, Extremal and approximative properties of simple partial fractions, Russ Math., 62 (2018), 6–41. https://doi.org/10.3103/S1066369X18120022
N. Anderson, E.B. Saff, R.S. Varga, On the Enestr¨om-Kakeya theorem and its sharpness, Linear Algebra Appl., 28 (1979), 5–16.
Copyright (c) 2021 A. V. Savchuk
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Matematychni Studii is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.